(1) The hiring manager Tom posed the following question in a job interview: Each of factors \(A \) and \(B \) separately causes significant changes on variable \(y \). However, when acting together, the collective effect of \(A \) and \(B \) on the change of \(y \) is not obvious at all. Why is that? As a statistician, please formulate the problem in an unambiguous statistical setting that includes (1a) well defined variables; (1b) a clear criterion under which people can compare different models and procedures; (1c) a reasonable answer to Tom’s question.

(2) Consider the regression model
\[
y_i = \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i, \quad i = 1, \ldots, n.
\]

(2a) In a controlled experiment, the covariates \(x_{ij} \) are assumed to be known, with unknown coefficients \(\beta_j, \ j = 1, \ldots, p; \) and \(\epsilon_i, \ i = 1, \ldots, n \) are iid random errors with mean 0 and an unknown variance \(\sigma^2 \). Suppose the sample size \(n \) is moderate and it is not possible to collect more data (due to some unexpected experimental difficulties). Propose a detailed procedure to obtain confidence intervals for \(\beta_1, \ldots, \beta_p \).

(2b) In an observational social study, the covariates \(\{x_{ij}\} \) are also included in the given data set together with \(\{y_i\} \), but cannot be treated as fixed values. What procedure would you propose to obtain confidence intervals for \(\beta_1, \ldots, \beta_p \) based on the observed data \(\{(y_i; x_{i1}, \ldots, x_{ip}) : i = 1, \ldots, n\}\)?

(3) Consider the regression model
\[
y = X\beta + \epsilon \quad \text{with observations} \quad y = (y_1, \ldots, y_4)^t, \quad \text{unknown coefficients} \quad \beta = (\beta_1, \beta_2, \beta_3)^t, \quad \text{iid errors} \quad \epsilon = (\epsilon_1, \ldots, \epsilon_4)^t \quad \text{with mean zero and unknown variance} \quad \sigma^2, \quad \text{and design matrix} \quad X = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}.
\]

(3a) Find an unbiased estimate for \(\beta_2 \) based on \(y \)? Can you find the BLUE for \(\beta_2 \)? Explain.

(3b) Is there identifiability issue for this model? If so, how would you resolve it?

(3c) Is it possible to test \(H_0 : \beta_2 = 0 \)? If so, provide the test statistics. If not, explain.