All problems have equal weight; partial credit will be given for each part of a problem. In budgeting your time, note that some parts will take longer than others. In many cases, different parts of a problem can be done independently, so if you are unsure how to handle one part of a problem, don’t hesitate to try the others. No answer should require a great deal of computation or a complicated proof.

1. Let $\mathbb{R}^{n \times p}$ denote the set of $n \times p$ real matrices, and let T be a bounded subset of \mathbb{R}^p. Define a function $f : \mathbb{R}^{n \times p} \to \mathbb{R}$ by

$$f(A) = \inf_{v \in T} ||Av||^2$$

where $||\cdot||$ is the usual Euclidean norm on \mathbb{R}^n.

(a) Argue carefully that $\sqrt{f(\cdot)}$ is Lipschitz, taking care to specify the Lipschitz constant, and the appropriate norm.

(b) Let let $U = f(W)$ where W is an $n \times p$ array of i.i.d. standard normal random variables. Find a simple upper bound on $\mathbb{P}(U \geq \mathbb{E}U + 2\sqrt{t \mathbb{E}U} + t)$ for $t > 0$. Hint: Relate the numerical quantity on the right hand side inside the probability to an expression involving $\mathbb{E}\sqrt{U}$ and \sqrt{t}.

2. Let $(U_1, V_1), (U_2, V_2), \ldots \in \mathbb{R}^2$ be i.i.d. such that $\mathbb{E}U_i = 1, \mathbb{E}V_i = 2, \text{Var}(U_i) = \text{Var}(V_i) = 1$, and $\text{Cov}(U_i, V_i) = \rho$. What can you say about the limiting behavior of

$$\left(\sum_{i=1}^n U_i \right) \log \left(\frac{\sum_{j=1}^n U_j}{\sum_{k=1}^n V_k} \right) ?$$

3. Let $\mathcal{P} = \{ \mathcal{N}(\mu, \sigma^2) : \mu \in (-\infty, \infty), \sigma^2 > 0 \}$ be the family of univariate normal distributions, and let X_1, X_2, \ldots be i.i.d. with $X_i \sim \mathcal{N}(\mu_0, \sigma_0^2)$.

(a) Find the Fisher information of \mathcal{P}.

(b) Find a lower bound on the variance of any unbiased estimate of μ_0/σ_0 based on X_1, \ldots, X_n.

(c) What is the maximum likelihood estimate of \(\theta_0 = (\mu_0, \sigma^2_0) \) based on \(X_1, \ldots, X_n \)? (You may simply give the answer – no calculations are necessary.) What can be said about the limiting behavior of this estimate as \(n \) tends to infinity? Briefly justify your answer.

4. Let \(\{U_n\}_{n \geq 1} \) and \(\{V_n\}_{n \geq 1} \) be sequences of random variables in \(\mathbb{R} \) and let \(\{X_n\}_{n \geq 1} \) be a sequence of random vectors in \(\mathbb{R}^d \), with all random quantities being defined on the same probability space. Suppose that \(U_n \to U \) in probability, \(V_n = 2 + o_P(1) \), and \(X_n \Rightarrow X \) in law with \(\mathbb{P}(X = 0) = 0 \). In each of the following cases, (i) indicate whether the quantity converges as \(n \) tends to infinity, (ii) identify the limit if one exists, and (iii) identify the type of convergence. Justify your answers.

(a) \(U_n/V_n \)
(b) \(X_n \log(V_n) \)
(c) \(\mathbb{E}[V_n/(1 + |V_n|)] \)
(d) \(X_n \mathbb{E}[V_n] \)
(e) \(U_n X_n \)
(f) \(||V_n X_n||^{-1} \)

5. Let \(X \sim \mathcal{N}_d(0, \Sigma_X) \) and \(Y \sim \mathcal{N}_d(0, \Sigma_Y) \) be \(d \)-dimensional multinormal random vectors such that \(\Sigma_Y - \Sigma_X \) is non-negative definite.

(a) Carefully define a random vector \(Z \in \mathbb{R}^d \) with the property that \(X + Z \) and \(X - Z \) have the same distribution as \(Y \).

(b) Let \(C \subseteq \mathbb{R}^d \) be a convex set. Show that \(\mathbb{P}(X \in C^c) \leq 2\mathbb{P}(Y \in C^c) \).