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0. Introduction

This is a sketch, at the upper undergraduate level, of some of the basic results in
evolutionary game theory for symmetric 2-player games. We introduce the static
properties of Nash equilibrium, neutral stability, and evolutionary stability; then we
introduce the replicator dynamics and the dynamic properties of stationarity, Lyapunov
stability, and asymptotic stability.

Our primary goal is to consider the implications relating these six properties and to
establish precisely which implications do and do not hold. The main results are
summarized in Table 12.6; later sections provide examples and the surprising number of
results needed to establish counterexamples to the implications that do not hold.

Familiarity with linear algebra is essential to reading these notes, and some exposure to
differential equations will be helpful. Only a tiny amount of probability is needed;
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probability mentioned only in (1.1) and in connection with Jensen's Inequality in Section
12.

It would be helpful also to have some knowledge of the most basic ideas of game theory.
If the early going seems sketchy, the reader might consult the author's earlier survey,
referred to in the Bibliography (Section 18 below). Also mentioned in the Bibliography
are some good introductions to game theory: the book by Osborne, or, at a higher level,
the one by Osborne and Rubinstein. Gintis's book is also interesting and illuminating.

These notes are based largely on material in Jorgen Weibull's book. We have also used
material from Hofbauer and Sigmund's book. All the books mentioned here are listed in
the Bibliography.

1. Notation and basic definitions

A symmetric 2-player game with & actions is determined by a k£ x k matrix A = [a;;];
the entry a;; represents the payoff to a player who takes action = when her opponent takes
actionj (i,j=1,...,k).

A (mixed) strategy for a game with k actions is a vector x = [z1 =3 - -- xk]T in the unit
simplex in R*, which we denote by A}, or, when no confusion is possible, by A.

k
Formally, A = {z € R¥ : Y, = 1 and a; > 0 for all 5}.
=1

All vectors named x, y, and so on will be column vectors.

We can interpret a strategy = = [y x5 - -- :ck.]T in any of three ways:
1. An x-player plays action ¢ with probability z; (: = 1,2, ..., k).
2. An x-population is either
a. A large population of z-players, or
b. A population with mix x, which is a large group of players, each of whom
always takes the same action, in which z; is the proportion who always take
action s.

The unit vectors e’ = [0---010--- O]T of A represent the pure strategies. The pure
strategy e’ consists of always playing action . An individual who always plays action 4
is called an z-player.

If we denote by u(z;y) the expected average payoff per play to a random member of an
x-population playing against a random member of a y-population, then

u(z;y) = =’ Ay, which for convenience we will denote = - Ay. (1.2)
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This is a bilinear function on A x A, and there is no other restriction: any bilinear
function u(x;y) on A x A (i.e., any k x k matrix A) uniquely determines a symmetric
2-player game with £ actions.

The support of z € A is the nonempty set S(x) = {i : z; > 0}.

The (closed) face spanned by the vectors ¢’ for i € S(x) is the smallest face containing
x, denoted F'(z).

2. Best replies

Strategy y is a best reply to strategy x if

u(y;x) > u(z;z) forall z € A.

2.1 Proposition. Any linear combination in A of best replies to x is a best reply to x.

Proof. Suppose y = > c;y/ isin A, and each y/ = [y] ---y}] is a best reply to z.
=1

J
m

First we observe that if y € A, then ) “¢; must equal 1 (although 0 < ¢; < 1 is not
1
necessary). To see this, note that
m k o k m ) )
=33t =3 S )«
j=1 =l i=1 \ j=1

and since y € A, its coefficients must sum to 1:
k

m ) m k ) m
=3 (St ) =Sy $e
J=1 Jj=1 =l j=1

i=1

Now u(y;; ) > u(z; z) forall z € A, and therefore for any z € A we have

m

u(y; x) = chu(yj; x) > ic.ju(z; x) = u(z; ). O

j=1 J=1

2.2 Proposition. If 3 is a best reply to x and i € S(y), then e’ is a best reply to .



EGT for symmetric 2-player games page 4

Proof. If any e’ is not a best reply to z, then

u(y;z) =Y giule’sz) < Y giuly;x) = u(y; o),
)

i€S(y i€S(y)

a contradiction. O
2.3 Proposition. If y is a best reply to x, then all the strategies in F'(y) (the smallest
closed face containing y) are best replies to x.

Proof. This follows immediately from the two preceding propositions. O

2.4 Proposition. The set of all best replies to x is a face of A.

Proof. Every best reply is a convex combination of vertices that are best replies, by
Proposition 2.2. And any convex combination of best replies is a best reply, by
Proposition 2.1. So the set of best replies is the set of convex combinations of some set
of vertices (namely, the union of the supports of all best replies). O

3. Nash equilibrium

A strategy x is a (symmetric) Nash equilibrium (NE) if z is a best reply to itself; that is,
if
u(x;x) > u(y;z) forall y € A. (3.1)

A strategy x is a strict Nash equilibrium if the inequality in (3.1) holds strictly for all
y# .

We will frequently take advantage of linearity to write (3.1) as u(xz — y; x) > 0, even
though x — y isnot in A.

We state here without proof John Nash's famous theorem. (Nash, of course, did not use
the term “Nash equilibrium”.)

3.2 Theorem (Nash, 1950). Any finite game has at least one Nash equilibrium.

The proof uses Kakutani's fixed-point theorem. If we let 3(x) denote the set of best
replies to x, then by Proposition 2.4, 5(x) is a face of A, so it is nonempty, closed,
and convex, for any x. One checks that the point-to-set map S is upper hemi-
continuous, and it follows by Kakutani's theorem that there is at least one x such that

x € B(z).
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3.3 Proposition. x is a Nash equilibrium if and only if

=u(x;z) ifie S(x)

u(e's2) { <wu(z;z) ifid¢ S(x). (34)

Proof. Suppose x is a Nash equilibrium. Obviously then u(e’; z) < u(x; ) for all
i. Andif i € S(z), then by Proposition 2.2 ¢’ is a best reply to z, so
u(el;z) = u(z; x).

Conversely, if x satisfies (3.4), then forany y = [y1, ..., y,] € A we have

k

) = Y p(eia) <3yl ) = i),

i=1

so x is a Nash equilibrium. O

3.5 Corollary. A strict Nash equilibrium is a pure strategy.

Proof. If z is a Nash equilibrium, then all ¢’ with i € S(x) are best replies also; but
if z is a strict Nash equilibrium, then there are no best replies other than z. So S(x)
must contain only one index 4, and = must equal ¢'. O

4. Evolutionary stability

Strategy « is evolutionarily stable if for every y # « there exists ¢, > 0 such that
u(z; (L —e)z+ey) > u(y; (1 —e)z+ey) for0 < e <e,. (4.2)

We refer to evolutionarily stable strategies as ESS.

If we replace the strict inequality sign > in (4.1) by >, we get the definition of a
neutrally stable strategy (an NSS).

Where we are headed in this and the next two sections. We are going to establish,
among other things, that each of the following three conditions is equivalent to the
evolutionary stability of a strategy .
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(Theorem 4.3) z is a Nash equilibrium (i.e., u(x, z) > u(y, ) for all y) that
satisfies in addition

if u(z; x) = u(y; x) for some y # x, then u(x;y) > u(y;y).

(Theorem 5.5) The strict inequality in (4.1) holds uniformly (z has a uniform
invasion barrier); that is, there exists ¢, such that for every y # x

u(z; (1 —e)x+ey) > u(y; (1 —e)x + ey) forall e < e,. (4.2)
(Theorem 6.1) « is locally superior; that is, there is a neighborhood U of z such that

u(x;y) > u(y;y) forally £ xin ANU.

4.3 Theorem. Strategy x is evolutionarily [resp. neutrally] stable if and only if =
satisfies

u(y;x) < u(z;z)forally € A (i.e., z isaNE), and

if u(y;x) = u(x;z)for somey # x, then u(y, y) < [resp. <] u(z,y). (44)
Proof. The inequality in (4.1) can be rewritten
(1 =€) (u(z; ) —uly; 2)) + e(ulz;y) —u(y; y) > 0,
and the result follows. O
John Maynard Keynes gave 4.4 as the definition of evolutionary stability.
4.5 Corollary. An ESSisa NSS, and a NSS is a NE. O
5. Invasion barriers
If z is an ESS and y # x, the invasion barrier of = against y, denoted b,.(y), is the
smaller of sup{e, : (4.1) holds} and 1. This is a positive number, and we have
u(z —y; (1 —€)x+ey) >0for0 < e < by(y). (5.1)

It will be useful to define

flez,y) =u(z —y; (1 — )z + ey)
= u(r —y;z) + e(u(z — y;y — x)).

This is a straight-line function of e.
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Notice that the definition of f(e; 2, y) makes sense for all e € R and all  and y € R¥,
although it has no meaningful interpretation as a difference of payoffs unless z, y, and
(1 —€)x+ey)areallin A.

Using this notation, we can say that

xzisaNE ifand only if f(0;x,y) > 0 for all y;

x is an ESS (by definition) if and only if for each y # « there is ¢, such that
f(e;z,y) > 0for0 < e < ¢,; and

x is an ESS (by Theorem 4.3) if and only if x is a Nash equilibrium and in addition,
if f(0;x,y) = 0 forsome y # x, then f(1;z,y) > 0.

We see that if = isa NE and y # x, then the graph of f(e; x, y) as a function of e looks
like one of the following.

A ()
B 0 E
g ' g ' g ' g \S
And an NE is an ESS if and only if f(e; x, y) is of the form A, B, or C for every y # x.

Obviously, then, b, (y) = 1 in cases B and C; and in case A, b, (y) is either the zero of
f(e;x,y) or 1, whichever is smaller.

The main result of this section is Theorem 5.5 below: an ESS has a uniform invasion
barrier. That is, there is an ¢, independent of y such that (4.2) holds. Equivalently, b,,
defined to be in£ b.(y), is positive.

ye

It is easy to see that b, (y) is a continuous function of y. And if x is an ESS, then by
definition b, (y) is positive for all y # =. We would like to argue that since A is
compact, b, (y) attains its infimum at some y € A and therefore the infimum must be
positive. However, b, (y) is not defined on all of A, but only on A — {z}, which is not
compact. We have to proceed as follows.

5.2 Proposition. If z is an ESS, y # x, and z is any point on the line segment joining x
and y, then b, (z) > b,(y). (Thatis, the farther y is from z, the smaller the invasion
barrier of = against .)

Proof. The assertion is equivalent to

fle;z,z) > 0fore < b,(y). (5.3)
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But z is of the form (1 — «)x + ay for some a € (0, 1), so
x—z=alr—y),
and forany e > 0
(l—ezx+ez=(1—e)x+e(l —a)r+eay
= (1 —ea)z + eay.
Therefore
flex, z) =u(z —2z,(1 — €)x + €2)
=u(a(x —y), (1 — ea)z + eay)
= of(ea; z,y).

If e < b,(y), then eax < b,(y), SO f(ea;x,z) > 0. Also a > 0, and it follows that
(5.2) holds. O

5.4 Corollary. If z isan ESS, then inzbgc(y) = inl]j b.(y), where F, denotes the union of
ye yer,

all closed faces of A that do not contain .
Proof. For any y # z, the line from x through y, continued, intersects the boundary
of A ina point y* of F,.. By Proposition 5.2, b, (y*) < b,(y). O

5.5 Theorem. If x is an ESS, then inibx(y) > 0. That is, there exists €, > 0 such that
ye

ulz—y,(1—€)x+ey) >0forally Axand 0 < € < ¢,.

Proof. b,(y) is continuous on the compact set F,, so there is y, € F, such that
b (v0) = in; by (y) = inibm(y). But because z is an ESS, b, (yo) > 0. O
YELy ye

If 2 is an ESS, the number insz(y) is denoted b, and called the invasion barrier of x
ye



EGT for symmetric 2-player games page 9

6. Local superiority

Strategy « is locally superior if there is a neighborhood U of z such that

u(z;y) > u(y;y) forally #xin ANU.

6.1 Theorem. A strategy x is an ESS if and only if it is locally superior.
Proof. First we show that an ESS is locally superior. An ESS z has a uniform
invasion barrier b,, so that

u(lx —y;(1—€)x+ey)) >0forally £Axand 0 < € < by, (6.2)

and we want to prove that there is a neighborhood U of z such that

u(zx —y;y) > 0forally € U NA.

As in the previous section, let £, be the union of all closed faces of A not
containing x. Let

V={l-€z+ey:yo€ F,and0 <e <b,}.

Then V contains U N A for some neighborhood of z. (This is because F, is
compact and does not contain x, and therefore the distances of points in £, from
x are bounded away from zero.) We show that u(xz — y;y) > 0 for y # z in this
neighborhood.

Such a y equals (1 — €)z + ey, for some yy € F, and some e with 0 < ¢ < €.
Because b, is auniform invasion barrier for x, we have

u(x — yo; (1 — €)x + eyp) > 0. (6.3)
But (1 — €)x + ey is just y, and one easily checks that
1
z—yo=—(z—y)
€
So (6.3) says
1
—u(z —y;y) > 0.
Thus an ESS is locally superior.

To see that a locally superior strategy is an ESS, suppose u(x — z; z) > 0 for all
z € UNA. Lety € Abegiven (y # =). We need to show that there exists ¢,
such that u(z — y; (1 —e)z +ey) > 0for0 < e < ¢,.
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There certainly exists e, suchthat z = (1 —e)z + ey € UNAfor 0 < e < ¢,
and for such z we have u(x — z; z) > 0. Butx — z = €(x — y), so this says that
eu(z —y; (1 —€e)x +ey) > 0for 0 < e < ¢, as required. O

7. Neutral stability

As defined in Section 4 above, strategy « is an NSS if for every y # « there exists ¢, > 0
such that

u(z; (1 —e)z+ey) > uly; (1 —e)z+ey) for0 < e <e,. (7.1)

The three conditions equivalent to evolutionary stability (summarized at the beginning of
Section 4 and proved as Theorems 4.3, 5.5, and 6.1) have analogous conditions
equivalent to neutral superiority:

(Theorem 4.3) =z is a Nash equilibrium (i.e., u(z, z) > u(y, x) for all y) that
satisfies in addition
if u(z;x) = u(y; x) for some y # z, then u(z;y) > u(y;y).

(Analog of Theorem 5.5) The strict inequality in (4.1) holds uniformly (x has a
uniform weak invasion barrier); that is, there exists ¢, such that for every y # «

u(z; (1 —e)x +ey) > u(y; (1 — e)x + ey) forall e < ¢,.

(Analog of Theorem 6.1) x is weakly locally superior; that is, there is a
neighborhood U of x such that

u(z;y) > u(y;y) forally £ xin ANU.

On p. 48 of Weibull's book are references to papers in which the proofs of the two
analogous theorems can be found.

8. Replicator dynamics

In this and later sections it is most convenient to view a mixed strategy x as the mix in a
population of pure-strategy players. That is, z; is the proportion of i-players in the
population.

The replicator dynamics are governed by a system of differential equations that model
the evolution in time of the population mix. The motivating scenario is that individuals
in the population have many encounters with randomly-chosen others, each encounter
consisting of one play of the game. When an i-player encounters a j-player, her payoff
u(e’; el) = a;; is added to her accumulation of “fitness points”. Her accumulated
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fitness points over time determine her number of offspring, all of whom grow up to be i-
players.

For simplicity we also assume that the number of encounters an individual has is large,
uniformly distributed in time, and roughly the same as that for other individuals. Thus
we can use the average number of points per play as a determiner of the number of
offspring.

Over many encounters, an i-player will have an expected average number of fitness
points per play equaling e’ - Az = u(e’; ). And across the whole population, the
expected average number of fitness points per play is x - Ax = u(z; x).

Finally, since the population is large, we make the simplifying assumption that = = x(t)
(for t > 0) changes continuously over time according to

i = xi(u(e’; ) —u(z;z)) fori=1,2,... k. (8.1)

These equations determine the replicator dynamics of the population. If i-players earn
more fitness points than the population average, their population share will increase; if
less, it will decrease.

Notice that the equations (8.1) make sense for any = € R”, although they have meaning
for us only when x € A. We establish first that A is an invariant set under the replicator
dynamics; that is, that if (0) € A, then z(¢) € A forall t € R. In fact, more is true:

8.2 Proposition. Any face of Ais invariant under (8.1), as is the interior of any face.
Proof. This is a consequence of the following facts:

Unions, intersections, complements, interiors, and closures of invariant sets are
invariant.

The orbit {z(¢) : t € R} is a continuous curve in R*.

Z; = {x : z; = 0} is invariant.

Any closed face of A is invariant.

The first two of these properties are standard results on systems of differential
equations; proofs can be found in Chapter 6 of Weibull's book. The third property is
an immediate consequence of (8.1).

To prove the fourth, let F' be a closed face and let S be the set of vertices of F’ (the

support of any « € F'). Forany z let sp(z) = > x;,s0that sp(z) = 1ifz € F.
ieS
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But for such z,

Sp = inu(ei; x) — szu(x, x)

el el
= u(z;x) — u(z; x)Zazz = 0. a
ieF

From now on, all vectors z, y, and so on under consideration are in A, and although we
usually use the term “point” for such an x, we think of it as a population mix.

9. Stationary points and Nash equilibria

A stationary point of a dynamical system & = f(x) is a point x such that i:; = 0 for all .
So a stationary point of the replicator dynamics (8.1) is a vector x such that

x; (u(ei; x) — u(w; a:)) =0 fori=1,2,...,k. (9.2

Thus, obviously, we have

9.2 Proposition. z is a stationary point of (8.1) if and only if

u(e’; x) = u(x; x) for all i such that z; > 0. O

That is, a population mix is stationary if and only if all strategies that are present have the
same expected payoff.

We will refer to a stationary point of the system (8.1) simply as a stationary point.

9.3 Theorem.
a. Every vertex of A is a stationary point.
b. Every Nash equilibrium is a stationary point.
c. Every stationary point in the interior of A is a Nash equilibrium.
(Thus, in the interior, z is a stationary point iff it is a Nash equilibrium.)

Proof. a. This follows immediately from Proposition 9.2.

b. If x is a Nash equilibrium, then (9.1) holds by Proposition 3.3.

c. If z is an interior stationary point, then x; > 0 for all 7, so by Proposition 9.2,
u(e’; ) = u(x; x) for all 4; by Proposition 3.3, z is a Nash equilibrium. O

A stationary point that is not a Nash equilibrium thus lies on a proper face of A, and has
the property that u(e’; x) > u(x; ) for some i ¢ S(x), while u(e’; z) = u(x; ) for all
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i € S(x). Aswe see in the next section, these are the stationary points that are not
Lyapunov stable under the replicator dynamics (8.1).

9.4 Proposition. The set of interior stationary points of (8.1) is the intersection of an
affine subspace of R* with A. It is either empty or a singleton unless the matrix on the
left side of (9.6) below is singular. In particular, if there is an isolated interior stationary
point, then there is exactly one interior stationary point.

Proof. An interior stationary point satisfies z; > 0 and u(e’; z) = u(z; z) for
1=1,...,k,and thus

u(e';x) = u(e?;x) = - = u(e’;x), andalso z; + -+, =1,  (9.5)

k
Using that u(z; y) = x - Ay for a k x k matrix A = [a;;], so that u(e’; z) = Y a;;z;,
=1

we see that (9.5) amounts to the system of linear equations

ay; — Qg1 a2 — Qg2 0 Q1p — Qg T 0
. . ) ) 2 :

. . . . ] — . . (9.6)
k11 — Q1 Qp—12 — Ak2 A1k — Qkk : 0
1 1 e 1 T 1

So the set of interior stationary points is the intersection of the solution set of (9.6)
with the positive orthant in R*. O

9.7 Counterexamples to converse implications. The converses of the implications in
Theorem 9.3 are all false in general. In particular,

a. Not every stationary point is a vertex.

b. Not every stationary point is a Nash equilibrium.

c. Not every stationary point that is a Nash equilibrium is in the interior.

We can give examples of all of these with £ = 2 and payoff functions u(x; y) of the form

u(z;y) = [ 902][2 2”‘7;;}:@(%1-1-19?;2)-

For such a payoff function we have

u(el;z) =0,
u(e’; ) = ax; + bxy, and
u(x;z) = xo(axy + bxs),

and the replicator dynamics are governed by
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jjl = —xl.’EQ(CL.Tl + b{L‘Q)
..'tg = —f—ﬂ?l.l‘g((ll‘l + bﬂ?g)

Notice that since zo = 1 — x; on A,, the dynamics are fully described by
jjl = —.7131(1 — .231)(@.%1 + b(l — .]31)) (95)

a. We see that z is a stationary point if and only if = is a vertex (x; = 0 or 1) or

ary + b(1 —x1) = 0. Thus, if b%a is strictly between 0 and 1 — that is, if a and b
are nonzero with opposite signs — then there is a stationary point that is not a vertex.
b. The vertex e? is a stationary point. It is a Nash equilibrium if and only if

u(e?;e?) > u(e?;el); thatis, if and only if b > 0. Soif b < 0, there is a stationary
point that is not a Nash equilibrium.

c. As seen in the example for b, €2 is a Nash equilibrium if and only if b > 0; it is
stationary, and it is not in the interior. O

10. Dynamic stability

A stationary point z¥ of a dynamical system & = f(x) is called Lyapunov stable if every
neighborhood of z° contains a neighborhood B of z° such that if (0) € B, then
x(t) € Bforall t. We may use “stable” to mean “Lyapunov stable”.

A stationary point 2° is asymptotically stable if it is Lyapunov stable and in addition
there is a neighborhood B such that if z(0) € B°. then lim x(t) = 20

(We will see below that in the 2-dimensional situation of 9.7 above, any Lyapunov stable
stationary point is asymptotically stable. This is not true for replicator dynamics in
general. Later we will present counterexamples to this and a number of other
implications that will have appeared.)

A stationary point that is not Lyapunov stable is called unstable.
In Section 11 we will consider the question of proving that a stationary point is Lyapunov
stable or asymptotically stable. In this section we show that stability implies Nash
equilibrium, but not conversely.
10.1 Theorem. A Lyapunov stable stationary point is a Nash equilibrium.

Proof. Suppose 2° is a stationary point but not a Nash equilibrium. Then, as noted

following the proof of Theorem 9.3, 2" is on a proper face of A and
u(e; %) > u(z2%; 2°) for some i ¢ S(z0).
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Since u is continuous, there exists § > 0 and a neighborhood U of z° such that
u(e’;y) —u(y;y) > é forally € U N A. By (8.1), then, &:; > éx; for any
reUNA.

Soif z(0) € UN A, then z;(t) > x;(0)e’, for all ¢ such that 2(¢) remains in U N A;
and thus certainly x(¢) does not remain in any neighborhood of z°. Thus a
stationary point that is not a Nash equilibrium cannot be Lyapunov stable. O

10.2 Counterexample to converse. A Nash equilibrium is a stationary point, but it need
not be Lyapunov stable. For an example, consider the setup of 9.3 above. The vertex e?
is a Nash equilibrium if and only if b > 0. It is Lyapunov stable if, for every ¢ > 0 there
is a positive § < e such that if = is within § of e? then ©; < 0. This is the same as saying
that &, < 0 if x; is sufficiently small. But (9.2) shows that this is true if a < 0.

Soif a < 0 < b, then e? is a Nash equilibrium but not Lyapunov stable. O

11. Proving stability: Lyapunov's Theorem and linearization

Here we state a couple of theorems that we will need for proving the asymptotic or
Lyapunov stability of stationary points in the replicator dynamics. In Section 12 we will
use Lyapunov's Theorem 11.2 to prove that an evolutionarily stable population mix is
asymptotically stable in the replicator dynamics, and a neutrally stable mix is Lyapunov
stable. In Section 17 we will use Theorem 11.3 on linearization to prove asymptotic
stability in certain examples.

Suppose z(t) follows a system of differential equations with (forward and backward)
orbits in C' C R¥, with z(0) = 2°. A Lyapunov function for z(¢) at 2° is a continuously
differentiable function H () on a neighborhood D of 2V, satisfying

H(z") =0,
H(z) >0 ifz # 2°, and (11.1)
H(z)<Oforallz € D.

Here H () denotes the time derivative of H (x), taken as = = 2(¢) follows the dynamics
in question. That is,

H(z)=VH(z) & = Z aiiH(x(t))ﬁci.
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H (z)is astrict Lyapunov function if the following strengthening of the third
requirement in (11.1) holds.

H(x) < 0forall z € D other than = = 2°.
The following theorem provides a method — Lyapunov's direct method — for proving
that a stationary point of a system of differential equations is Lyapunov stable or
asymptotically stable. It is a special case of theorems found on pp. 245-249 of Weibull's
book.

11.2 Theorem. Let z° be a stationary point of a system of differential equations.
If the system has a Lyapunov function at z°, then z° is a Lyapunov stable stationary
point.
If it has a strict Lyapunov function at ¥, then x° is an asymptotically stable stationary
point.

11.3 Theorem (linearization). Suppose 2 is a stationary point of the system

i = f(z) = [fi(z) - fr(@)]". If f(x)is continuously differentiable at 2° and all the
eigenvalues of the Jacobian of f(x) at 2° have negative real parts, then z° is an
asymptotically stable stationary point.

The Jacobian of f(z) is the matrix whose 7j entry is g—{

12. Evolutionary stability and dynamic stability

The main results here, in Theorem 12.4, are that evolutionary stability implies asymptotic
stability, and that neutral stability implies Lyapunov stability. To prove these we use
Lyapunov's direct method (Theorem 11.2); we also need Jensen's Inequality (12.7
below).

Let « be any population mix in A. The Kullback-Leibler relative entropy of y with
respect to x is defined as

H,(y) = =) wilog(yi/x:),

i€S(x)
and this definition makes sense for any y in the set
Qe =A{y:S(y) 2 S(x)}.

This is the set of all 3y such that y; > 0 whenever x; > 0. It is an open set in R*, because
x is in the interior of the face of A spanned by the ¢’ for i € S(x), and Q, consists of all
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y that are not on the boundary of that face. (Unless z is a vertex, in which case @, is the
complement of {z}.)

12.1 Proposition. H,(y) > 0 for all y € @,, with equality if and only if y = x.

Proof. Itisobvious that H,(z) = 0. Forany y € @, other than y = x, define the
discrete random variable Z to have the nonzero value z; = y; /x; with probability x;,
and let ¢(z) = —log(z). The function ¢ is concave upwards. So

H.(y) = Ep(Z)
> @(EZ) by Jensen's inequality (12.7 below)

- _'ng)y“ (12.2)

i€S(z

v

k
—log) “y; =log1 = 0.
i=1

Now the first inequality in (12.2) holds strictly unless, for some a and b,

log(y;/x;) = ay;/z; + b forall i € S(x). This can happen only if S(x) is a
singleton. In this case x is a vertex, and since y # x, S(y) # S(z). But then the
second inequality in (12.2) holds strictly. O

12.3 Corollary.
If H,(y) <0 forall yin aneighborhood of x, then = is a Lyapunov stable stationary

point of the replicator dynamics.
If H,(y) < 0forall y # x in a neighborhood of , then z is an asymptotically stable
stationary point of the replicator dynamics.

Proof. This follows immediately from Proposition 12.1 and Theorem 11.2. O

Remarkably, the time derivative of H, relates directly to the local superiority of x:

12.4 Proposition. H,(y) = u(y;y) — u(z;y) forany y € Q..
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Proof.

H.(y) = —Z o iyz

i€S(z yz/xz Ty

= —Z —yl — u(y;y))

i€S(x
= —Z i(u —u(y;y))
i€S(x)
= —(u(z;y) —u(y; y)). O

12.5 Theorem. If x is evolutionarily stable, then = is an asymptotically stable stationary
point of the replicator dynamics. If z is neutrally stable, then z is a Lyapunov stable
stationary point of the replicator dynamics.

Proof. By Theorem 6.1, z is evolutionarily stable if and only if it is locally superior;
that is if and only if u(x;y) > wu(y;y) for all y in some neighborhood of z. In this
case H,(y) < 0 in aneighborhood of z, so « is an asymptotically stable stationary
point.

By the extension of Theorem 6.1 mentioned in Section 7, x is neutrally stable if and

only if u(z;y) > u(y;y) for all y in some neighborhood of z. In this case
H . (y) < 0in a neighborhood of x, so z is a Lyapunov stable stationary point. O

At this point we have established the following implications.

Table 12.6

neutrally

/" stablestrat. Lyap. stable Nash stat.

evolutionarily . .
stat. point equil. point

stable strategy N\, asymp.stable

stat. point

That evolutionary stability implies neutral stability, and that asymptotic stability implies
Lyapunov stability, follow directly from the definitions. The other implications were
established in Theorems 9.3, 10.1, and 12.4.

The properties in bold italics are dynamic stability properties, defined in connection with
the replicator dynamics. The others are static, game-theoretic stability properties, defined
solely in terms of the payoff function u(z; y).

We will use the following abbreviations for the properties listed in Table 12.6:
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SP: stationary point

NE: Nash equilibrium

LSSP: Lyapunov stable stationary point
ASSP: asymptotically stable stationary point
NSS: neutrally stable strategy

ESS: evolutionarily stable strategy

As we will see, no implication not entailed by Table 12.6 holds in general. To confirm
this, we will need examples of the following.

A SP that is not a NE
A NE that is not a LSSP
A NSS that is not an ASSP
(this will also be an LSSP that is not an ASSP, and a NSS that is not an ESS)
An ASSP that is not a NSS
(this will also be an LSSP that is not a NSS, and an ASSP that is not an ESS)

We have already seen in (9.7) a SP that is not a NE. Much of what follows will be taken
up with giving examples of the others.

We used the following in the proof of Theorem 12.1.

12.7 Jensen's Inequality. If Z is a random variable and ¢(z) is concave upward on an
interval containing the set of possible values of Z, and if EZ and Ey(Z) are both finite,
then

p(EZ) < Ep(Z). (12.8)

Moreover, the inequality (12.8) is strict unless ¢ (Z) = aZ + b with probability 1 for
some constants a and b.

Proof. Lety = az + b be a supporting line for the convex curve y = ¢(z) at the
point (z = EZ, y = ¢(EZ)). Thatis,
aEZ +b=o(EZ) (12.9)
and az + b < ¢(z) forxz € I. So
aZ + b < p(Z) with probability 1,
and therefore

aEZ +b < Ep(2). (12.10)

This inequality holds strictly unless aZ + b = ¢(Z) with probability 1. Combining
(12.9) and (12.10) gives the theorem. O
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13. Invariance of the dynamics under matrix operations

Before proceeding it will be helpful to establish some reductions that simplify the
analysis of the population dynamics for specific games. In particular, we show that if the
payoff matrix is multiplied by a positive constant, or if any constant is added to any
column of the payoff matrix, the six static and dynamic stability properties in Table 12.6
are unchanged. In addition, the orbits of the replicator dynamics are unchanged,; all that
changes is the rate at which the population evolves.

For a symmetric 2-player game with & actions and payoff function u(z;y) = x - Ay,
consider the game with payoff function v(x; y) determined by the matrix B = a A + bEY,
where E7 is the matrix with 1's in the 5 column and zeros elsewhere. Thus B is the
result of multiplying A by a constant and adding a constant to one of the columns.

13.2 Proposition. If Aisany k& x k matrix and B = aA + bE7 where a and b are any
real numbers, we have, for any z and z in A,
x-Bz=ax- Az + bz;. (13.2)
Consequently, for any z, y, and z in A,
(r—vy) -Bz=a(zx—vy)- Az. (13.3)
Proof.

x-Bz=x-(aA+bE’)z
k
=axr- Az + szZacj
1
=ax - Az + bz;.

And (13.3) follows:
(x—y)-Bz=ax-Az —ay- Az+bz; —bzj = a(z — y) - Az. a

Recall the following definitions, from Sections 3 and 4, for an arbitrary payoff matrix A
and z € A.

x is a Nash equilibrium if and only if (x — y) - Az > 0 forall y € A.

x is neutrally stable if and only if (z — y) - A((1 — €)x 4 ey) > 0 for all y and all
sufficiently small e.

x is asymptotically stable if and only if (z — y) - A((1 — €)x + ey) > 0 for all y and
all sufficiently small e.

13.4 Theorem. The Nash equilibria, neutrally stable strategies, and evolutionarily stable
strategies for B = a A + bEY are the same as for A, as long as a is positive.
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Proof. This follows from (13.3) and the definitions repeated just above. O

13.5 Proposition. If a > 0, then the replicator dynamics for B = a A + bE’ are
&; = az;((e — z) - Az). (13.6)

Proof. The replicator dynamics for B are
&; =z;((e' —z) - Bx),

and the result follows immediately from (13.3). O

13.7 Theorem. The orbits of the replicator dynamics for B are the same as those for A.
As a consequence, the stationary points for B are the same as those for A, and, if a is
positive, so are the Lyapunov stable stationary points and the asymptotically stable
stationary points.

Proof. This follows from (13.6); the replicator dynamics for A and B differ only in
that those for B have the right side multiplied by the positive constant a. O

Again we note that the replicator dynamics are not identical for A and B; however, they
differ only in that the rate of evolution for B is a times that for A.

14. The 2x2 case: dynamics

Here we characterize the replicator dynamics of any two-player symmetric game with
only two actions. We identify all the stationary points and establish conditions under

which they are Lyapunov stable and asymptotically stable. In the next section we will
investigate the static equilibrium properties of these points (NE, NSS, ESS).

The replicator dynamics are

T = a:l((el -A:IZ‘—ZB-A:IJ‘) and

To = xQ((e2 cAx —x - A:U). (14.1)

Notice first that for any x = [x; 5] € Ay, we have 5 = 1 — 2 and therefore
9 = —i1, and so the replicator dynamics are described completely by

I :scl((el Az — z - Ax). (14.2)
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From Theorem 13.7 we see that we need to study the dynamics only for matrices of the
form

0 0
A= {a b} (14.3)
for real numbers a and b, because any 2 x 2 matrix can be reduced to this form by
subtracting appropriate numbers from the columns (in this case, subtracting the first row
from both rows). For A of this form, (14.2) becomes

1 = mmxe(azy + bxe) = x1(1 — x1)((b — a)xy — b). (14.4)

Itis clear from (14.4) that = = [z x»] is a stationary point if z; = 0, if z; = 1, or if
(b — a)xy — b = 0. The following is immediate.

14.5 Proposition. In the trivial case a = b = 0, all z € A, are stationary points.
Otherwise, there are either two or three stationary points in A,: e! and e? are stationary

points, and, if 0 < ;& < 1, 2" = [;2,=2]" is a stationary point. O

In the rest of this section we will determine, under all possible conditions on a and b,
what the orbits of the dynamics are, and thus classify the stationary points as unstable
(USP), Lyapunov stable (LSSP), or asymptotically stable (ASSP).

[In the next section we will examine the stationary points for their static stability
properties, classifying them as not equilibria, Nash equilibria (NE), neutrally stable
strategies (NSS), or evolutionarily stable strategies (ESS).]

It is easy to see at the outset that except in the trivial case a = b = 0 (Case 0 below), the
orbits must be as in one of the following four pictures, and the dynamic stability of the
stationary points e', e?, and z° must be as indicated.

orbits el e? 20
1 2

A . S| usp |Assp| —
'E.‘1 92

B ¢ s |AssP| usp | —
e‘l XD 92

c . . ¢ | USP | USP | AssP
1 1] 2

D e« o+ ¢ | ASSP | ASSP | USP
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[Two additional cases, in which there is an interior stationary point but the orbits on both
sides go in the same direction, are impossible here, because the function
y = (b — a)xy — bis linear and must change sign at a zero.]

We note also that except in the trivial case a = b = 0, all stationary points are either
unstable or asymptotically stable. We will have to consider 3 x 3 games to find
nontrivial situations with Lyapunov stable stationary points that are not asymptotically
stable.

Excepting the trivial case a = b = 0, there are in fact eight distinct cases for the line
y = (b — a)xy — b; each leading to one of the orbit diagrams above.

Case 0. a = b = 0. Inthistrivial case all x € A, are stationary points, and they are
necessarily Lyapunov stable.

Casel. b—a>0, ;- <0. [Thatis,a < b <0.]

|

Here £, > 0 for all z; € (0, 1), so the orbits are as in B above.

Case2. b—a <0, ;& <0.[Thatis,a > b >0.]

\1 4

Here &1 < 0 forall z; € (0, 1), so the orbits are as in A above.

Case3. b—a >0, ;&= > 1. [Thatis, b > a > 0]

[ 1 4

Here &1 < 0 forall z; € (0, 1), so the orbits are as in A above.

Cased. b—a <0, ;& > 1. [Thatis,b < a < 0]

\ P 4

Here i; > 0 for all z; € (0, 1), so the orbits are as in B above.
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Case5. b—a=0,b<0. [Thatis, b =a < 0.]

' “

Here £, > 0 for all z; € (0, 1), so the orbits are as in B above.

Case6. b—a=0,b>0.[Thatis,b =a > 0.]

Here i:; < 0 forall z; € (0, 1), so the orbits are as in A above.

Case7. b—a>0,0< ;= < 1. [Thatis,a <0< b.]

‘ , M
h 7 1
b-a

Here &, < 0 for z; < ;2 and &, > 0 for z; > ;2 so the orbits are as in D above.

Case8. b—a<0,0< ;= <1 [Thatis,a>0>b]

t X
b 7 1
b-a

Here & > 0 for z; < ;& and &, < 0 for 2; > ;2 so the orbits are as in C above.

Combining these, we get
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14.6 Proposition. For the replicator dynamics as in (14.1), with A = {2 2} and

20 = ﬁ [b —a]T, the orbits and dynamic stability properties of the stationary points

are, except for the trivial case a = b = 0, as shown in Table 14.7. O
Table 14.7
orbits el e’ 2’ | Cases
e1 92
a>0,>0| A e ¢« | USP | ASSP| — | 2,36
61 92
a<0,b<0|B e ¢« | ASSP | USP — 1,45
91 XD lE.'2
a>0>b | C e . ¢+ | USP | USP | ASSP| 8
e1 XD 92
a<0<b D e—<« >+ | ASSP | ASSP | USP 7

15. The 2x2 case: static stability properties

Now we want to place the stationary points on the diagram of implications in Table 12.6;
that is, decide whether they are Nash equilibria, neutrally stable strategies, or
evolutionarily stable strategies. There are three kinds of stationary point:

For any unstable stationary point, we need to ascertain whether or not it is a Nash
equilibrium.

For any Lyapunov stable stationary point that is not asymptotically stable, we need
to ascertain whether or not it is neutrally stable. (Such points exist only in the
trivial case a = b = 0.)

And for any asymptotically stable stationary point, we need to ascertain whether it is
evolutionarily stable, neutrally stable, or only a Nash equilibrium.

Orbit diagram A: In this case a > 0 and b > 0, and at least one is strictly positive.
el is an unstable stationary point. It is a Nash equilibrium if and only if

u(el;el) > u(e?;el), by Proposition 3.3; that is, if and only if 0 > a. So e! is a Nash
equilibrium if and only if @ = 0. This is Case 6 of the previous section.
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e? is an asymptotically stable stationary point. By Theorem 6.1 and its counterpart for
neutrally stable strategies (mentioned at the end of Section 7), €2 is [evolutionarily,
neutrally] stable if and only if u(e?;z) [ >, > ]wu(x;x) for all z near e?; that is, for
x = [e 1— ] forsmall positive e. But for such z,

u(e?;z) —u(z;z) = ae + b(1 —€) — (1 — €)(ae + b(1 —€))
= e(ae +b(1 —¢))
= (a — b)€* + be.

This is positive for small positive ¢ if either b > 0 or b = 0 < «; but in the situation of
orbit diagram A, one of these conditions holds. So e? is evolutionarily stable.

Orbit diagram B: Here a < 0 and b < 0 and at least one is strictly negative. The
situation is symmetric to that of orbit diagram A, with « and b replaced by —b and —a,
respectively. So the unstable stationary point e? is a Nash equilibrium if b = 0, and the
asymptotically stable stationary point e! is evolutionarily stable.

[The transformation from diagram A into diagram B is this: subtract the second row of A
from both rows, and then exchange the roles of the two players by interchanging the rows
and the columns of the matrix.]

Orbit diagram C: Herea > 0 > b.

The unstable stationary point e is a Nash equilibrium if and only if
u(el;el) > u(e?;el); thatis, if and only if 0 > a. So e is not a Nash equilibrium.
Similarly, the unstable stationary point 2 is not a Nash equilibrium.

The asymptotically stable stationary point z¥ is [evolutionarily, neutrally] stable if and
only if u(2;z) [ >, > ] u(x;x) for all z near zV. Notice that in this case

2% = -L-[~b a] and @ — b is positive. Points z near z° are of the form

ﬁ [—b+ € a— e]for small ¢, which may be positive or negative. So 2 is
[evolutionarily, neutrally] stable if and only if u(2° — x;2)[ >, >10. But

2" —x=-L[—¢ €] andso

ab
u(xo—ib‘;fﬂ‘):(a_lb)Q[_G 6][2 2}{_;—11

S PRI P -5

which is positive. So in this case = is evolutionarily stable.
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Orbit diagram D: Herea < 0 < b.

By Theorem 9.3, a stationary point in the interior of A, is a Nash equilibrium, so the
unstable stationary point z° is a Nash equilibrium in this case.

The asymptotically stable stationary point e! is [evolutionarily, neutrally] stable if and
only if u(e!; x) — u(x;z) [ >, >1]1 0forall z near e!; thatis, forallz = [1 — ¢ €] for
small positive e. Now e! —z = [¢ —¢] for such z, so

e
=le el [a(l —2) —l—be}
= —¢((b—a)e+a)

= —(b—a)é* — ae.

This is positive for small positive e because a < 0 in this case. So e! is evolutionarily
stable.

Again we could make the transformation used for orbit diagram B to see that e? is
evolutionarily stable, but we do the calculations as a check. e? is [evolutionarily,
neutrally] stable if and only if u(e?; z) — u(x;z) [ >, > 0 forall z near e?; that is, for
xr=[e 1—¢]forsmall positive e. Forsuchz, e? —z=[—¢ €],50

o) ~uwsn) = [ [y D]], <]

0
=l 6][ae—l—b(l —e)]
=e(ae+b(1 —¢))
= be + (a — b)e?.

Since b > 0 in this case, this is positive, so e? is evolutionarily stable.
The trivial case. Here u(z;y) = 0 for all z and y and all x € A, are Lyapunov stable,

but not asymptotically stable, stationary points. A point z is neutrally stable if and only
if u(z;y) > u(y;y) for all y near z. Since these are both zero, all x are neutrally stable.
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15.1 Proposition. For the replicator dynamics as in (14.1), with A = {2 2} and

20 = ﬁ [b —a]T, the orbits and the static and dynamic stability properties of the
stationary points are as shown in Table 15.2. In each case, the indicated property is the

strongest that can be asserted. O
Table 15.2
orbits el e? 20
91 92
a=0,0>0| A e «+ | NE | ESS | —
91 92
a>0,0>0| A e e« |USP|ESS | —
91 92
a<0,b=0|B « |ESS| NE | —
e1 92
a<0,b<0|B o e | ESS | USP
61 XD 'E'2
a>0>b |€ e—>—+—<« ¢ | USP|USP|ESS
e1 XD 92
a<0<b | D s . e | ESS | ESS | NE
a=b=0 All points in A, are NSS.

Counterexamples to implications not entailed in Table 12.6. At the end of Section 12
we listed the examples needed to show that only the implications entailed by Table 12.6
hold in general. We have now found all but one of these in the above analysis of 2 x 2
games:

A SP that is not a NE: Several cases as shown above.

A NE thatis not a LSSP: 2% inthe case a < 0 < b.

A NSS that is not an ASSP: All points in the trivial case.

An ASSP that is not a NSS: There are no examples of this among 2 x 2 games.

[In case it is objected that one of the examples exists only in the trivial case, we mention that
0 0 0

for 3 x 3 games with payoff matrices of the form | 0 0 a [, the situation restricted to the
b ¢ d

face containing e! and e? is trivial, although the game is not. For at least some nontrivial

values of a, b, ¢, and d, all points on this face are neutrally stable stationary points but are

not asymptotically stable. Such games, in which two of the pure strategies behave

identically with respect to each other but differently with respect to a third, are studied

extensively in the author's earlier survey, referred to in the Bibliography.]
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16. Results and examples on evolutionary and neutral stability

Our main goal for the rest of this survey is to find an example of a game with a point x
that is an ASSP but not a NSS. In this section we show a relatively simple way to
determine whether an interior stationary point is a NSS or an ESS.

Recall that z € A is an ESS [resp. NSS] if and only if u(x;y) > [resp. > ] u(y;y) for all
y sufficiently near but not equal to = in A. (This is the characterization of evolutionary
stability by local superiority given in Theorem 6.1 and its analog in Section 7.)

Recall that the support S(z) of z is the set of indices ¢ for which z; > 0. It will be
convenient to consider the set R(z) = {r € R* : r # 0and 2 + r € A}. Notice that if

r=[ri,...,m|" € R(x),then > r; =0,and r; > 0ifi ¢ S(x).

16.1 Proposition. Suppose z is a NE of the game determined by u(z;y) = x - Ay.
(@) Ifu(r;r) < 0forall r € R(x), then z is a NSS.
(b) If z is an interior point of A, then x is a NSS [resp. ESS] if and only if u(r;7r) <0
[resp. < 0] forall r € R(z).

Proof. As noted in Section 7, x is an NSS if and only if it is weakly locally superior; that
is, if and only if u(y — z;y) < 0 for ynear = in A. This is the same as saying that

u(r; x + r) < 0 for sufficiently small r = y — x € R(x). Since

u(ryxz+1r)=r- Az +r- Ar, we have that

xisaNSS iff r- Az +r-Ar <0 forr € R(z). (16.2)

Similarly, from Theorem 6.1 on local superiority, we have that
xisan ESS iff r- Az +r-Ar <0 forr € R(x). (16.3)

Without loss of generality let S(z) = {1,..., j}. Since x is a NE, it follows that

T
Arx =lc,..., ¢, Cji1,...,Ck)

where ¢ = u(z;x)and ¢; < ¢ fori > j. Moreover, if r € R(z), thenr; > 0fori > j.
So

r-Av=c(ri+---+rj))+cirj + - Fopry <c(ri+ - +1) =0.

Assertion (a) follows because of (16.2).

If z is an interior NE, then Az = [c,...,c] and r - Az = 0, and assertion (b) follows
because of (16.2) and (16.3). O
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16.4 Example. Consider u(z;y) = x - Ay where

3 40 O
A=1(10 8 35
15 0 28

Since all the row sums of A are equal, it follows that = = %[1 1 1]" satisfies
Az = 1[43 43 43)". Sowu(e’;x) = % fori = 1,2, 3, and thus = is an interior NE.

a. We show using Proposition 16.1 that x is not a NSS.

We need only show that w(r; ) = r - Ar is positive for some r in R(z). Such r are
of the form r = [ & —e—¢]" for small eand 6. For such an  we have

1 3 40 O €
r-Ar=—led—e=6]| 0 8 35 )
182
15 0 28| |—e-6

1 24 ¢2
=1z [16€*+6%+46¢6]
which is certainly positive for some values of € and 6.

b. We show incidentally that z is the only interior stationary point.

For any w = [w; wy ws]’ We have

311]1 + 4011)2
Aw = | 8wy + 3bws
15wy + 28ws

If w is an interior stationary point, then all the entries of Aw equal w - Aw, because
w; = w;(e' - Aw —w - Aw). So we have

3wy + 40we = 8wy + 35wz = 8wq + 35(1 — wy — we),
which implies that
38w + 47wy = 35, (16.5)
and also
3wy + 40we = 15wy + 28wz = 15wy + 28(1 — wy — wy),
which implies that
16w; + 68wy = 28. (16.6)

One can check that (16.7) and (16.8) imply that w; = ws = % and the assertion
follows. O
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A plot of one orbit, generated using MATLAB, suggests that x is (globally)
asymptotically stable:

e3

el a2

We will see in Section 17 that x is indeed an ASSP. Note that because x is not a NSS,
and thus not an ESS, the Kullback-Leibler relative entropy (see Section 12) will not be a
Lyapunov function.

16.7 Example. Weibull's Example 3.9 is the game u(x;y) = x - Ay where

1
A=10
)

S = Ot
= Ot O

Here arguments similar to those in Example 16.4 show that the pointx = %[3 8 7]T is

the unique interior SP and is a NE but is not an NSS; and the plot of an orbit suggests that
x is asymptotically stable.

We got Example 16.4 from this example by using the “centering” transformation suggested
by Hofbauer and Sigmund (Exercise 7.1.3, p. 68). They observe that if 2 = [z1---z;]” isa
stationary point of the replicator dynamics for u(xz;y) = x - Ay, theny = Kleyzy -+ cpai]”

k
(with K = 1/ "¢;z;) is a stationary point of the replicator dynamics for u(z;y) = = - By,
1

where b;; = 7.

It turns out that checking for an ASSP is much simplified if the interior NE in question is the
center %[1 e 1]T. This happens when, as in Example 16.4, the row sums of A are all equal.
The transformation that moves z to y = +[1 - 1]" makes the row sums of A equal.
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16.8 Example. On page 71 of Hofbauer and Sigmund's book is the matrix

0 6 —4
A=1[-3 0 5
-1 3 0

This matrix has constant row sums, and as a result = = [1 1 1]" is the unique interior
NE. As in Example 16.4 we can check that it is not a NSS: specifically, for

r=[e 6 —e—0]", we have that r - Ar = 5¢2 — 852, which is both positive and negative
in any neighborhood of 0. Here the plot of some orbits is as follows.

This is strikingly different from the pictures for the previous two examples; nevertheless,
as we will see, the center point = is asymptotically stable.

Thus, once we have proved asymptotic stability in the three examples of this section, we
will have completed the program, set out at the end of Section 15, of showing that none
of the implications not entailed in Table 12.6 hold in general.

17. Proving asymptotic stability using linearization

As we noted at the end of Example 16.4, when x is not a NSS we cannot prove that x is
an ASSP using the Kullback-Leibler relative entropy as a Lyapunov function. (If we
could, then 2 would be an ESS and thus a NSS.) We could try to find another Lyapunov
function in such a case, but instead we linearize the replicator dynamics and use Theorem
11.3.

This turns out to be simplified greatly if the row sums of the matrix A are all equal, in
which case z = £[11--- 1]" is the unique interior SP, and it is a NE.

As always, the game is determined by u(z;y) = = - Ay where A = [a;;] is an arbitrary
k x k matrix. The replicator dynamics are & = f(x) = [fi(z) --- fx(z)]; that is,
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& = filz) = z5(e" - Ax — x - Ax). (17.1)

The Jacobian of f at x is the k x k matrix J = J f(x) whose ij entry is aff ( ).

17.2 Proposition. a%(ei - Az) = ajj.

Proof. e’ - Ax = ajix; + - + aip T |

17.3 Proposition. 8%(9: CAz) =el - (A+ ATz,

Proof. = - Az = 25 + Y ajxx, + Y agx.x; + (terms not involving ;).

- -
Therefore
0
D — (- Az) = 2a2; + Zajr:m« + Zaijs
i v oy
= ZCLJT‘T’ + Zaijs
k
=D (a5 +a)z

r=1

This is precisely the 5" row of A + AT times z, or e/ - (A + AT)z. O

17.4 Proposition. With f asin (17.1),
3fz( )= {ei'Aa:—x-Ax—Hci(aii—ei-(A+AT)x) if j =1,

0z, zi(a; — el - (A+ AD)z) if 5 #4.
Consequently, if 2 is an interior stationary point, so that ¢’ - Az — = - Az = 0, then
afi ,
f ( ) = xi(aij —el- (A + AT)LL') (175)
Ox;
Proof. This is immediate from Propositions 17.2 and 17.3. O

17.6 Corollary. Suppose the row sums of A are all equal. Then z = %[1 .- 1] isan
interior stationary point and a Nash equilibrium, and

afl 1 th
axj( ) ]{7 (kaw —J

column sum of A + A”). (17.6)
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Proof. If the row sums all equal s, then when z = £[1---1], we have ¢’ - Az = 2
for all 4, and so by Proposition 3.6, = is a NE. Also, in (17.5) x; = % and

el - (A4 A7)z is the 5" row sum of A + AT, which equals the 5t column sum
because A + AT is symmetric. O

17.7 Example. Returning to Example 16.4, we have

3 40 O
A=|[0 8 35
15 0 28

The row sums all equal 43 and = = £[1 1 1] is the unique interior SP and a NE. We saw
in 16.4 that it is not a NSS. It is asymptotically stable if the eigenvalues of J f(z) all
have negative real parts. We have

6 40 15
A+ AT = 140 16 35| and the column sums are [61 91 106].
15 35 56
It follows from 17.6 that
=52 29 106
Jf(z)==|—-61 —67 —1

-16 —-91 22

One can check that the eigenvalues of this matrix are —% and —% + 105/31‘. They all
have negative real parts, and so by Theorem 11.3, x is an ASSP.

Thus, at last, we have completed the set of examples showing that no implications other
than those entailed by Table 12.6 are true in general.

17.8 Example. The same holds for Example 16.8, where we have

0 6 —4
A=1[-3 0 5
-1 3 0

The row sums are equal, = = [1 1 1] is the unique interior SP and a NE, and we showed
that « is not a NSS. But

0 3 -5
A+ AT =13 0 8 |;thecolumnsumsare[-2 11 3].
-5 8 0

It follows from 17.6 that
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2 7 -1
Jf@) =5 -7 -1 12 |,
-1 -2 -3

and the eigenvalues of this are —% and —% + @z all have negative real parts. So again
we have an ASSP that is not a NSS.
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