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___________________________________

0.  Introduction

This is a sketch, at the upper undergraduate level, of some of the basic results  in
evolutionary game theory for symmetric 2-player games.  We introduce the static
properties of Nash equilibrium, neutral stability, and evolutionary stability; then we
introduce the replicator dynamics and the  properties of stationarity, Lyapunovdynamic
stability, and asymptotic stability.

Our primary goal is to consider the implications relating these six properties and to
establish precisely which implications do and do not hold.  The main results are
summarized in Table 12.6; later sections provide examples and the surprising number of
results needed to establish counterexamples to the implications that do not hold.

Familiarity with linear algebra is essential to reading these notes, and some exposure to
differential equations will be helpful.  Only a tiny amount of probability is needed;
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probability mentioned only in (1.1) and in connection with Jensen's Inequality in Section
12.

It would be helpful also to have some knowledge of the most basic ideas of game theory.
If the early going seems sketchy, the reader might consult the author's earlier survey,
referred to in the Bibliography (Section 18 below).  Also mentioned in the Bibliography
are some good introductions to game theory:  the book by Osborne, or, at a higher level,
the one by Osborne and Rubinstein.  Gintis's book is also interesting and illuminating.

These notes are based largely on material in Jörgen Weibull's book.  We have also used
material from Hofbauer and Sigmund's book.  All the books mentioned here are listed in
the Bibliography.

___________________________________

1.  Notation and basic definitions

A  is determined by a  matrix ;symmetric 2-player game with  actions5 5 ‚ 5 E œ +c d34

the entry  represents the payoff to a player who takes action  when her opponent takes+ 334

action   ( ).4 3ß 4 œ "ßá ß 5

A (mixed) strategy for a game with  actions is a vector  in the unit5 B œ B B â Bc d" # 5
X

simplex in  which we denote by  or, when no confusion is possible, by .‘ ? ?5
5ß

Formally, {  and  for all }.? ‘œ B − À B œ " B   ! 35

3œ"

5

3 3�
All vectors named , , and so on will be column vectors.B C

We can interpret a strategy  in any of three ways:B œ B B â Bc d" # 5
X

1.  An  plays action  with probability  ( .x-player 3 B 3 œ "ß #ßá ß 5Ñ3

2.  An  is eitherx-population
a.  A large population of -players, orB
b.  A , which is a large group of players, each of whompopulation with mix x

always takes the same action, in which  is the proportion who always takeB3

action .3

The unit vectors  of  / œ !â!" !â!3 Xc d ? represent the .  The purepure strategies
strategy  consists of always playing action .  An individual who always plays action / 3 33

is called an 3-player.

If we denote by  the expected average payoff per play to a random member of an?ÐBà CÑ
B C-population playing against a random member of a -population, then

?ÐBà CÑ œ B ECß B † ECÞX  which for convenience we will denote (1.1)



EGT for symmetric 2-player games page 3

This is a bilinear function on er restriction:  any bilinear? ?‚ , and there is no oth
function  on  (i.e., any  matrix ) uniquely determines a symmetric?ÐBà CÑ ‚ 5 ‚ 5 E? ?
2-player game with  actions.5

The  of  is the nonempty set .support B − WÐBÑ œ 3 À B  !? e f3

The (closed) face spanned by the vectors  for  is the smallest face containing/ 3 − WÐBÑ3

B J ÐBÑ, denoted .

___________________________________

2.  Best replies

Strategy  is a  to strategy  ifC Bbest reply

?ÐCà BÑ   ?ÐDà BÑ D − Þ  for all ?

2.1  Proposition.  Any linear combination in  of best replies to  is a best reply to .? B B

Proof.  Suppose  is in , and each  is a best reply to .C œ - C C œ C âC B� : ‘
4œ"

7

4
4 4

"
4 4

5?

First we observe that if  then  must equal 1 (although  is notC − ß - ! Ÿ - Ÿ "? �
"

7

4 4

necessary).  To see this, note that

C œ - C / œ - C / ß� � � �8 9
4œ" 3œ" 3œ" 4œ"

7 5 5 7

4 43 3
4 43 3

and since C − ?, its coefficients must sum to 1:

" œ � � � � �8 9
3œ" 4œ" 4œ" 3œ" 4œ"

5 7 7 5 7

4 4 43 3
4 4- C œ - C œ - † "Þ

Now  for all  and therefore for any  we have?ÐC à BÑ   ?ÐDà BÑ D − ß D −4 ? ?

?ÐCà BÑ œ - ?ÐC à BÑ   - ? Dà B œ ? Dà B Þ� � � � � �
4œ" 4œ"

7 7

4 4
4

2.2 Proposition.  If  is a best reply to  and , then  is a best reply to .C B 3 − WÐCÑ / B3
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Proof.  If any  is not a best reply to , then/ B3

?ÐCà BÑ œ C ?Ð/ à BÑ  C ? Cà B œ ? Cà B ß� � � � � �
3−WÐCÑ 3−WÐCÑ

3 3
3

a contradiction.

2.3 Proposition.  If  is a best reply to , then all the strategies in  (the smallestC B JÐCÑ
closed face containing ) are best replies to .C B

Proof.  This follows immediately from the two preceding propositions.

2.4 Proposition.  The set of all best replies to  is a face of .B ?

Proof.  Every best reply is a convex combination of vertices that are best replies, by
Proposition 2.2.  And any convex combination of best replies is a best reply, by
Proposition 2.1.  So the set of best replies is the set of convex combinations of some set
of vertices (namely, the union of the supports of all best replies).

___________________________________

3.  Nash equilibrium

A strategy  is a if  is a best reply to itself; that is,B B(symmetric) Nash equilibrium  (NE)
if

?ÐB BÑ   ?ÐCà BÑ C −;  for all . 3.1? � �
A strategy  is a if the inequality in (3.1) holds strictly for allB strict Nash equilibrium 
C Á B.

We will frequently take advantage of linearity to write (3.1) as , even?ÐB  Cà BÑ   !
though  is not in .B  C ?

We state here without proof John Nash's famous theorem.  (Nash, of course, did not use
the term “Nash equilibrium”.)

3.2 Theorem (Nash, 1950).  Any finite game has at least one Nash equilibrium.

The proof uses Kakutani's fixed-point theorem.  If we let denote the set of best"ÐBÑ
replies to , then by Proposition 2.4,  is a face of , so it is nonempty, closed,B ÐBÑ" ?
and convex, for any .  One checks that the point-to-set map  is upper hemi-B "
continuous, and it follows by Kakutani's theorem that there is at least one  such thatB
B − ÐBÑÞ"
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3.3 Proposition.   is a Nash equilibrium if and only ifB

?Ð/ à BÑ
œ ?ÐBà BÑ 3 − WÐBÑ
Ÿ ?ÐBà BÑ 3 Â WÐBÑÞ

3 œ if 
if (3.4)

Proof.  Suppose  is a Nash equilibrium.  Obviously then  for allB ?Ð/ à BÑ Ÿ ?ÐBà BÑ3

3 3 − WÐBÑ / B.  And if , then by Proposition 2.2  is a best reply to , so3

?Ð/ à BÑ œ ?ÐBà BÑÞ3

Conversely, if  satisfies (3.4), then for any  we haveB C œ C ßá ß C −c d" 8 ?

?ÐCà BÑ œ C ? / à B Ÿ C ?ÐBà BÑ œ ? Bà B� �ˆ ‰ � �
3œ" 3œ"

5 8

3 3
3 ,

so  is a Nash equilibrium.B

3.5 Corollary.  A strict Nash equilibrium is a pure strategy.

Proof.  If  is a Nash equilibrium then all  with are best replies also; butB ß / 3 − WÐBÑ3

if  is a strict Nash equilibrium, then there are no best replies other than .  So B B WÐBÑ
must contain only one index , and   must equal 3 B / Þ3

___________________________________

4.  Evolutionary stability

Strategy  is if for every  there exists  such thatB C Á B  !evolutionarily stable %C

?ÐBà Ð"  ÑB  CÑ  ?ÐCà Ð"  ÑB  CÑ !  % % % % % %  for . (4.1)C

We refer to evolutionarily stable strategies as ESS.

If we replace the strict inequality sign  in (4.1) by , we get the definition of a  
neutrally stable NSS strategy (an ).

Where we are headed in this and the next two sections.  We are going to establish,
among other things, that each of the following three conditions is equivalent to the
evolutionary stability of a strategy .B
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(Theorem 4.3)   is a Nash equilibrium (i.e.,  for all ) thatB ?ÐBß BÑ   ?ÐCß BÑ C
satisfies in addition

if  for some ,  then ?ÐBà BÑ œ ?ÐCà BÑ C Á B ?ÐBà CÑ  ?ÐCà CÑÞ

(Theorem 5.5)  The strict inequality in (4.1) holds uniformly (  has a B uniform
invasion barrier); that is, there exists  such that for every %B C Á B

?ÐBà Ð"  ÑB  CÑ  ?ÐCà Ð"  ÑB  CÑ % % % % % %  for all . (4.2)B

(Theorem 6.1)   is ; that is, there is a neighborhood  of  such thatB Y Blocally superior

?ÐBà CÑ  ?ÐCà CÑ C Á B ∩ Y for all  in .?

4.3 Theorem.  Strategy  is evolutionarily [resp. neutrally] stable if and only if B B
satisfies

?ÐCà BÑ Ÿ ?ÐBà BÑ C − B

?ÐCà BÑ œ ?ÐBà BÑ C Á B ?ÐCß CÑ  Ÿ ?ÐBß CÑÞ

 for all     (i.e.,  is a NE), and
if for some , then [resp. ] (4.4)

?

Proof.  The inequality in (4.1) can be rewritten

Ð"  ÑÐ?ÐBà BÑ  ?ÐCà BÑÑ  Ð?ÐBà CÑ  ?ÐCà CÑ  !% % ,

and the result follows.

John Maynard Keynes gave 4.4 as the definition of evolutionary stability.

4.5 Corollary.   An ESS is a NSS, and a NSS is a NE.

___________________________________

5.  Invasion barriers

If  is an ESS and , the , denoted , is theB C Á B , ÐCÑinvasion barrier of  against  B C B

smaller of (4.1) holds  and 1.  This is a positive number, and we havesupe f%C À

?ÐB  Cà "  B  CÑ  ! !   , ÐCÑ� �% % % for . (5.1)B

It will be useful to define

0Ð à Bß CÑ œ ?ÐB  Cà Ð"  ÑB  CÑ

œ ?ÐB  Cà BÑ  ?ÐB  Cà C  BÑ

% % %

%� �.

This is a straight-line function of .%
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Notice that the definition of  makes sense for all  and all  and ,0Ð à Bß CÑ − B C −% % ‘ ‘5

although it has no meaningful interpretation as a difference of payoffs unless , , andB C
Ð"  ÑB  CÑ% % ? are all in .

Using this notation, we can say that

B 0Ð!à Bß CÑ   ! C is a NE if and only if  for all ;

B C Á B is an ESS (by definition) if and only if for each  there is such that%C
0Ð à Bß CÑ  ! !  % % % for ; andC

B B is an ESS (by Theorem 4.3) if and only if   is a Nash equilibrium and in addition,
if  for some then 0Ð!à Bß CÑ œ ! C Á Bß 0Ð"à Bß CÑ  !Þ

We see that if  is a NE and , then the graph of  as a function of  looksB C Á B 0 à Bß C� �% %
like one of the following.

And an NE is an ESS if and only if  is of the form A, B, or C for every 0Ð à Bß CÑ C Á BÞ%
Obviously, then,  in cases B and C; and in case A,  is either the zero of, C œ " , CB B� � � �
0 à Bß C Þ� �%  or 1, whichever is smaller

The main result of this section is Theorem 5.5 below:  an ESS has a uniform invasion
barrier.  That is, there is an  independent of  such that (4.2) holds.  Equivalently, ,%B BC ,
defined to be  , is positive.inf

C−
B

?
, ÐCÑ

It is easy to see that  is a continuous function of   And if  is an ESS, then by, ÐCÑ CÞ BB

definition  is positive for all .  We would like to argue that since  is, ÐCÑ C Á BB ?
compact,  attains its infimum at some  and therefore the infimum must be, ÐCÑ C −B ?
positive.  However,  is not defined on all of , but only on , which is not, C  BB� � e f? ?
compact.  We have to proceed as follows.

5.2 Proposition. If  is an ESS, and  is any point on the line segment joining B C B D BÁ ß
and , then   (That is, the farther  is from , the smaller the invasionC D C, Ð Ñ   , Ð ÑÞ C BB B

barrier of  against .)B C

Proof.  The assertion is equivalent to

0Ð à ß Ñ  !  , Ð Ñ% %B D Cfor . 5.3B � �
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But  is of the form  for some , soD B CÐ"  Ñ  − Ð!ß "Ñα α α

B D B C œ Ð  Ñα ,

and for any %  !

Ð"  Ñ  œ Ð"  Ñ  Ð"  Ñ 

œ Ð"  Ñ  Þ

% % % % α %α

%α %α

B D B B C

B C

Therefore

0Ð à ß Ñ œ ?Ð  ß Ð"  Ñ  Ñ

œ ?Ð Ð  Ñß Ð"  Ñ  Ñ

œ 0Ð à ß Ñ

% % %

α %α %α

α %α

B D B D B D

B C B C

B C .

If , then , so .  Also , and it follows that% %α %α α , Ð Ñ  , Ð Ñ 0Ð à ß Ñ  !  !B BC C B D
(5.2) holds.

5.4 Corollary.   If  is an ESS, then , where  denotes the union ofB C Cinf inf
C

B B B
C− −J?

, Ð Ñ œ , Ð Ñ J
B

all closed faces of  that do not contain .? B

Proof.  For any , the line from  through , continued, intersects the boundaryC B B CÁ
of  in a point  of .  By Proposition 5.2, .? C C C‡ ‡J , Ð Ñ Ÿ , Ð ÑB B B

5.5 Theorem.  If  is an ESS, then    That is, there exists  such thatB Cinf
C

B
−

B
?
, Ð Ñ  !Þ  !%

?Ð  ß Ð"  Ñ  Ñ  ! Á !   ÞB C B C C B% % % % for all  and B

Proof.  is continuous on the compact set , so there is  such that, Ð Ñ J − JB B BC C!
, Ð Ñ œ , Ð Ñ œ , Ð Ñ , Ð Ñ  !ÞB B B B

C C
C C C B C! !

−J −
inf inf

B ?
.  But because  is an ESS, 

If  is an ESS, the number  is denoted  and called the  of B , Ð Ñ , Binf
C

B
−

B
?

C invasion barrier
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6.  Local superiority

Strategy  is if there is a neighborhood  of  such thatB Y Blocally superior 

?ÐBà CÑ  ?ÐCà CÑ C Á B ∩ Y for all  in .?

6.1  Theorem.  A strategy  is an ESS if and only if it is locally superior.B

Proof.  First we show that an ESS is locally superior.  An ESS  has a uniformB
invasion barrier , so that,B

?Ð  à Ð"  Ñ  ÑÑ  ! Á !   ,B C B C C B% % % for all  and , (6.2)B

and we want to prove that there is a neighborhood  of  such thatY B

?Ð  à Ñ  ! − Y ∩ ÞB C C C for all ?

As in the previous section, let  be the union of all closed faces of  notJB ?
containing .  LetB

Z œ Ð"  Ñ  À − J ! Ÿ  ,e f% % %B C C! ! BB and .

Then contains  for some neighborhood of .  (This is because  isZ Y ∩ J? B B

compact and does not contain , and therefore the distances of points in  fromB JB

B B C C C B are bounded away from zero.)  We show that  for  in this?Ð  à Ñ  ! Á
neighborhood.

Such a  equals  for some  and some  with C B C CÐ"  Ñ  − J !   Þ% % % % %! ! B

Because is a uniform invasion barrier for , we have,B B

?Ð  à Ð"  Ñ  Ñ  !B C B C! !% % . (6.3)

But  is just , and one easily checks thatÐ"  Ñ % %B C C!

B C B C œ 
"

!
%

� �.

So (6.3) says

"
?Ð  à Ñ  !
%

B C C .

Thus an ESS is locally superior.

To see that a locally superior strategy is an ESS, suppose  for all?Ð  à Ñ  !B D D
D C C B− Y ∩ − Á? ? %.  Let  be given ( ).  We need to show that there exists C

such that  for .?Ð  à Ð"  Ñ  Ñ  ! !  B C B C% % % %C
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There certainly exists  such that  for ,% % % ? % %C CD B Cœ Ð"  Ñ  − Y ∩ !  
and for such  we have . But , so this says thatD B D D B D B C?Ð  à Ñ  !  œ Ð  Ñ%
% % % % %?Ð  à Ð"  Ñ  Ñ  ! !  B C B C  for , as required.C

___________________________________

7.  Neutral stability

As defined in Section 4 above, strategy  is an NSS if for every  there exists B C Á B  ! %C
such that

?ÐBà Ð"  ÑB  CÑ   ?ÐCà Ð"  ÑB  CÑ !  % % % % % %  for . (7.1)C

The three conditions equivalent to evolutionary stability (summarized at the beginning of
Section 4 and proved as Theorems 4.3, 5.5, and 6.1) have analogous conditions
equivalent to neutral superiority:

(Theorem 4.3)   is a Nash equilibrium (i.e.,  for all ) thatB ?ÐBß BÑ   ?ÐCß BÑ C
satisfies in addition

if  for some ,  then ?ÐBà BÑ œ ?ÐCà BÑ C Á B ?ÐBà CÑ   ?ÐCà CÑÞ

(Analog of Theorem 5.5)  The strict inequality in (4.1) holds uniformly (  has aB
uniform weak invasion barrier); that is, there exists  such that for every %B C Á B

?ÐBà Ð"  ÑB  CÑ   ?ÐCà Ð"  ÑB  CÑ % % % % % %  for all .B

(Analog of Theorem 6.1)   is ; that is, there is aB weakly locally superior
neighborhood  of  such thatY B

?ÐBà CÑ   ?ÐCà CÑ C Á B ∩ Y for all  in .?

On p. 48 of Weibull's book are references to papers in which the proofs of the two
analogous theorems can be found.

___________________________________

8.  Replicator dynamics

In this and later sections it is most convenient to view a mixed strategy  as the mix in aB
population of pure-strategy players.  That is,  is the proportion of -players in theB 33

population.

The  are governed by a system of differential equations that modelreplicator dynamics
the evolution in time of the population mix.  The motivating scenario is that individuals
in the population have many encounters with randomly-chosen others, each encounter
consisting of one play of the game When an -player encounters a -player, her payoffÞ 3 4
?Ð/ à / Ñ œ +3 4

34  is added to her accumulation of  “fitness points”.  Her accumulated
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fitness points over time determine her number of offspring, all of whom grow up to be -3
players.

For simplicity we also assume that the number of encounters an individual has is large,
uniformly distributed in time, and roughly the same as that for other individuals.  Thus
we can use the average number of points per play as a determiner of the number of
offspring.

Over many encounters, an -player will have an expected average number of fitness3
points per play equaling .  And across the whole population, the/ † EB œ ?Ð/ à BÑ3 3

expected average number of fitness points per play is B † EB œ ?ÐBà BÑÞ

Finally, since the population is large, we make the simplifying assumption that B œ BÐ>Ñ
Ð >   !Ñfor  changes continuously over time according to

B œ B Ð?Ð/ à BÑ  ?ÐBà BÑÑ 3 œ "ß #ßá ß 5Þ†
3 3

3     for (8.1)

These equations determine the  of the population If -players earnreplicator dynamics .  3
more fitness points than the population average, their population share will increase; if
less, it will decrease.

Notice that the equations (8.1) make sense for any , although they have meaningB − ‘5

for us only when   We establish first that B − Þ? ? is an  under the replicatorinvariant set
dynamics; that is, that if , then  for all .  In fact, more is true:BÐ!Ñ − BÐ>Ñ − > −? ‘?

8.2  Proposition.  Any face of is invariant under (8.1), as is the interior of any face.?

Proof.  This is a consequence of the following facts:

Unions, intersections, complements, interiors, and closures of invariant sets are
invariant.

The orbit  is a continuous curve in e fBÐ>Ñ À > − Þ‘ ‘5

^ œ B À B œ !3 3e f is invariant.
Any closed face of  is invariant.?

The first two of these properties are standard results on systems of differential
equations; proofs can be found in Chapter 6 of Weibull's book.  The third property is
an immediate consequence of (8.1).

To prove the fourth, let  be a closed face and let  be the set of vertices of (theJ W J

support of any ).  For any  let , so that  if B − J B = ÐBÑ œ B = ÐBÑ œ " B − J ÞJ 3 J
3−W

�
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But for such ,B

= œ B ?Ð/ à BÑ  B ?ÐBà BÑ†

œ ?ÐBà BÑ  ?ÐBà BÑ B œ !Þ

J 3 3

3−J 3−J

3

3−J

3

� �
�

From now on, all vectors , , and so on under consideration are in , and although weB C ?
usually use the term “point” for such an , we think of it as a population mix.B

___________________________________

9.  Stationary points and Nash equilibria

A  of a dynamical system is a point  such that  for all .stationary point B œ 0ÐBÑ B B œ ! 3† †
3

So a stationary point of the replicator dynamics (8.1) is a vector  such thatB

B ? / à B  ? Bà B œ ! 3 œ "ß #ßá ß 5Þ3
3ˆ ‰� �( )  for (9.1)

Thus, obviously, we have

9.2 Proposition.   is a stationary point of (8.1) if and only ifB

?Ð/ à BÑ œ ?ÐBà BÑ 3 B  !Þ3
3 for all  such that 

That is, a population mix is stationary if and only if all strategies that are present have the
same expected payoff.

We will refer to a stationary point of the system (8.1) simply as a stationary point.

9.3 Theorem.
a.  Every vertex of  is a stationary point.?
b.  Every Nash equilibrium is a stationary point.
c.  Every stationary point in the interior of  is a Nash equilibrium.?
 (Thus, in the interior,  is a stationary point iff it is a Nash equilibrium.)B

Proof.  a.  This follows immediately from Proposition 9.2.

b.  If  is a Nash equilibrium, then (9.1) holds by Proposition 3.3.B

c.  If  is an interior stationary point, then  for all , so by Proposition 9.2,B B  ! 33

? / à B œ ? Bà B 3 B( )  for all ; by Proposition 3.3,  is a Nash equilibrium.3 � �
A stationary point that is a Nash equilibrium thus lies on a proper face of , and hasnot ?
the property that  for some , while ( )  for all?Ð/ à BÑ  ?ÐBà BÑ 3 Â W B ? / à B œ ? Bà B3 3� � � �
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3 − WÐBÑÞ  As we see in the next section, these are the stationary points that are not
Lyapunov stable under the replicator dynamics (8.1).

9.4  Proposition.  The set of interior stationary points of (8.1) is the intersection of an
affine subspace of  with .  It is either empty or a singleton unless the matrix on the‘ ?5

left side of (9.6) below is singular.  In particular, if there is an isolated interior stationary
point, then there is exactly one interior stationary point.

Proof.  An interior stationary point satisfies  and  forB  ! ?Ð/ à BÑ œ ?ÐBà BÑ3
3

3 œ "ßá ß 5, and thus

?Ð/ à BÑ œ ?Ð/ à BÑ œ â œ ?Ð/ à BÑß B â B œ "" # 5
" 5and also , (9.5)

Using that  for a  matrix , so that ,?ÐBà CÑ œ B † EC 5 ‚ 5 E œ + ?Ð/ à BÑ œ + Bc d �34 34 4
3

4œ"

5

we see that (9.5) amounts to the system of linear equations

Ô ×Ô × Ô ×Ö ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö Ù
Õ ØÕ Ø Õ Ø

+  + +  + â +  +
ã ã ä ã

+  + +  + â +  +
" " â "

B !
B ã
ã !
B "

œ

"" 5" "# 5# "5 55

5"ß" 5" 5"ß# 5# 5"ß5 55

"

#

5

. (9.6)

So the set of interior stationary points is the intersection of the solution set of (9.6)
with the positive orthant in .  ‘5

9.7  Counterexamples to converse implications.  The converses of the implications in
Theorem 9.3 are all false in general.  In particular,

a.  Not every stationary point is a vertex.
b.  Not every stationary point is a Nash equilibrium.
c.  Not every stationary point that is a Nash equilibrium is in the interior.

We can give examples of all of these with  and payoff functions  of the form5 œ # ?ÐBà CÑ

?ÐBà CÑ œ œ B Ð+C  ,C ÑÞB B
! ! C
+ , C

c d” •” •" #
"

#
# " #

For such a payoff function we have

?Ð/ à BÑ œ !ß

?Ð/ à BÑ œ +B  ,B ß

?ÐBà BÑ œ B Ð+B  ,B Ñß

"

#
" #

# " #

 and

and the replicator dynamics are governed by
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B œ B B Ð+B  ,B Ñ†

B œ B B Ð+B  ,B ÑÞ†
" " # " #

# " # " #

Notice that since  on , the dynamics are fully described byB œ "  B# " #?

B œ B Ð"  B ÑÐ+B  ,Ð"  B ÑÑÞ &†
" " " " " (9. )

a.  We see that  is a stationary point if and only if  is a vertex (  or ) orB B B œ ! ""

+B  ,Ð"  B Ñ œ !Þ + ," "
,

,+  Thus, if  is strictly between 0 and 1 — that is, if  and 
are nonzero with opposite signs — then there is a stationary point that is not a vertex.

b.  The vertex  is a stationary point.  It is a Nash equilibrium if and only if/#

?Ð/ à / Ñ   ?Ð/ à / Ñ ,   ! ,  !# # # " ; that is, if and only if .  So if , there is a stationary
point that is not a Nash equilibrium.

c.  As seen in the example for b,  is a Nash equilibrium if and only if ; it is/ ,   !#

stationary, and it is not in the interior.

___________________________________

10.  Dynamic stability

A stationary point  of a dynamical system  is called  if everyB B œ 0ÐBÑ†! Lyapunov stable
neighborhood of  contains a neighborhood  of  such that if , thenB F B BÐ!Ñ − F! !

BÐ>Ñ − F >for all .  We may use “stable” to mean “Lyapunov stable”.

A stationary point  is  if it is Lyapunov stable and in additionB! asymptotically stable
there is a neighborhood  such that if . then .F BÐ!Ñ − F BÐ>Ñ œ B! ! !

>Ä∞
lim

(We will see below that in the 2-dimensional situation of 9.7 above, any Lyapunov stable
stationary point is asymptotically stable.  This is not true for replicator dynamics in
general.  Later we will present counterexamples to this and a number of other
implications that will have appeared.)

A stationary point that is not Lyapunov stable is called .unstable

In Section 11 we will consider the question of proving that a stationary point is Lyapunov
stable or asymptotically stable.  In this section we show that stability implies Nash
equilibrium, but not conversely.

10.1 Theorem.  A Lyapunov stable stationary point is a Nash equilibrium.

Proof.  Suppose  is a stationary point but not a Nash equilibrium.  Then, as notedB!

following the proof of Theorem 9.3,   is on a proper face of  andB! ?
?Ð/ à B Ñ  ?ÐB à B Ñ 3 Â W B3 ! ! ! ! for some � �.
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Since  is continuous, there exists  and a neighborhood  of  such that?  ! Y B$ !

?Ð/ à CÑ  ?ÐCà CÑ  C − Y ∩ Þ B  B†3
3 3$ ? $ for all   By (8.1), then,  for any

B − Y ∩?.

So if , then , for all  such that  remains in ;BÐ!Ñ − Y ∩ B Ð>Ñ  B Ð!Ñ/ > BÐ>Ñ Y ∩? ?3 3
>$

and thus certainly  does not remain in any neighborhood of   Thus aBÐ>Ñ B Þ!

stationary point that is not a Nash equilibrium cannot be Lyapunov stable.

10.2  Counterexample to converse.  A Nash equilibrium is a stationary point, but it need
not be Lyapunov stable.  For an example, consider the setup of 9.3 above.  The vertex /#
is a Nash equilibrium if and only if .  It is Lyapunov stable if, for every  there,   !  !%
is a positive  such that if  is within  of  then .  This is the same as saying$ % $Ÿ B / B  !†#

"

that  if  is sufficiently small.  But (9.2) shows that this is true if .B  ! B +  !†
" "

So if , then  is a Nash equilibrium but not Lyapunov stable.+  ! Ÿ , /#

___________________________________

11.  Proving stability:  Lyapunov's Theorem and linearization

Here we state a couple of theorems that we will need for proving the asymptotic or
Lyapunov stability of stationary points in the replicator dynamics.  In Section 12 we will
use Lyapunov's Theorem 11.2 to prove that an evolutionarily stable population mix is
asymptotically stable in the replicator dynamics, and a neutrally stable mix is Lyapunov
stable.  In Section 17 we will use Theorem 11.3 on linearization to prove asymptotic
stability in certain examples.

Suppose  follows a system of differential equations with (forward and backward)B >� �
orbits in , with .  A  for  at  is a continuouslyG © BÐ!Ñ œ B BÐ>Ñ B‘5 ! !Lyapunov function
differentiable function  on a neighborhood  of , satisfyingLÐBÑ H B!

LÐB Ñ œ !

LÐBÑ  ! B Á B

LÐBÑ Ÿ ! B − H
†

!

!

,  
 if , and 
 for all  .

(11.1)

Here  denotes the time derivative of , taken as  follows the dynamicsLÐBÑ LÐBÑ B œ BÐ>Ñ
†

in question.  That is,

LÐBÑ œ fLÐBÑ † B œ LÐBÐ>ÑÑB Þ
† † †`

`B
�
3œ"

5

3
3
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LÐBÑ is a  if the following strengthening of the thirdstrict Lyapunov function
requirement in (11.1) holds.

LÐBÑ  ! B − H B œ B
†  for all  other than .!

The following theorem provides a method — Lyapunov's direct method — for proving
that a stationary point of a system of differential equations is Lyapunov stable or
asymptotically stable.  It is a special case of theorems found on pp. 245-249 of Weibull's
book.

11.2 Theorem.  Let  be a stationary point of a system of differential equations.B!

If the system has a Lyapunov function at , then  is a Lyapunov stable stationaryB B! !

point.
If it has a strict Lyapunov function at , then  is an asymptotically stable stationaryB B! !

point.

_________________________

11.3 Theorem (linearization).  Suppose  is a stationary point of the systemB!

B œ 0ÐBÑ œ 0 ÐBÑ â0 ÐBÑ 0ÐBÑ B† c d" 5
X !.  If is continuously differentiable at  and all the

eigenvalues of the Jacobian of  at  have negative real parts, then  is an0ÐBÑ B B! !

asymptotically stable stationary point.

The Jacobian of  is the matrix whose  entry is .0ÐBÑ 34 `0
`B

3

4

___________________________________

12.  Evolutionary stability and dynamic stability

The main results here, in Theorem 12.4, are that evolutionary stability implies asymptotic
stability, and that neutral stability implies Lyapunov stability.  To prove these we use
Lyapunov's direct method (Theorem 11.2); we also need Jensen's Inequality (12.7
below).

Let  be any population mix in .  The  of  withB C? Kullback-Leibler relative entropy
respect to  is defined asB

L ÐCÑ œ  B ÐC ÎB ÑB 3 3 3

3−WÐBÑ

� log ,

and this definition makes sense for any  in the setC

U œ C À WÐCÑ ª WÐBÑ ÞB e f
This is the set of all  such that  whenever   It is an open set in , becauseC C  ! B  !Þ3 3

5‘
B / 3 − WÐBÑ U is in the interior of the face of  spanned by the  for , and  consists of all? 3

B
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C B U that are not on the boundary of that face.  (Unless  is a vertex, in which case  is theB

complement of )e fB Þ

12.1 Proposition.   for all , with equality if and only if L ÐCÑ   ! C − U C œ BÞB B

Proof.   It is obvious that   For any  other than , define theL ÐBÑ œ !Þ C − U C œ BB B

discrete random variable  to have the nonzero value  with probability ,^ D œ C ÎB B3 3 3 3

and let .  The function  is concave upwards.  So: :ÐDÑ œ  ÐDÑlog

L ÐCÑ œ I Ð^Ñ

  ÐI^Ñ

œ  C

   C œ " œ !Þ

B

3−WÐBÑ

3

3œ"

5

3

:

:      by Jensen's inequality (12.7 below)

(12.2)log

log log

�
�

Now the first inequality in (12.2) holds strictly unless, for some  and ,+ ,
logÐC ÎB Ñ œ +C ÎB  , 3 − W BÑ WÐBÑ3 3 3 3  for all ( .  This can happen only if  is a
singleton.  In this case  is a vertex, and since , .  But then theB C Á B WÐCÑ Á WÐBÑ
second inequality in (12.2) holds strictly.

12.3  Corollary.
If   for all  in a neighborhood of , then  is a Lyapunov stable stationaryL ÐCÑ Ÿ ! C B B

†
B

point of the replicator dynamics.
If   for all  in a neighborhood of , then  is an asymptotically stableL ÐCÑ  ! C Á B B B

†
B

stationary point of the replicator dynamics.

Proof.  This follows immediately from Proposition 12.1 and Theorem 11.2.

Remarkably, the time derivative of  relates directly to the local superiority of :L BB

12.  Proposition.%    for any L ÐCÑ œ ? Cà C  ?ÐBà CÑ C − U Þ
†
B B� �
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Proof.

L ÐCÑ œ  † C
† B "

C ÎB B
†

œ  C Ð?Ð/ à CÑ  ?ÐCà CÑÑ
B

C

œ  B Ð?Ð/ à CÑ  ?ÐCà CÑÑ

œ Ð?ÐBà CÑ  ?ÐCà CÑÑÞ

B

3−WÐBÑ

3

3 3 3
3

3−WÐBÑ

3

3
3

3

3−WÐBÑ

3
3

�
�
�

12.5  Theorem.  If  is evolutionarily stable, then  is an asymptotically stable stationaryB B
point of the replicator dynamics.  If  is neutrally stable, then  is a Lyapunov stableB B
stationary point of the replicator dynamics.

Proof.  By Theorem 6.1,  is evolutionarily stable if and only if it is locally superior;B
that is if and only if  for all  in some neighborhood of .  In this?ÐBà CÑ  ?ÐCà CÑ C B
case  in a neighborhood of , so  is an asymptotically stable stationaryL ÐCÑ  ! B B

†
B

point.

By the extension of Theorem 6.1 mentioned in Section 7,  is neutrally stable if andB
only if  for all  in some neighborhood of .  In this case?ÐBà CÑ   ?ÐCà CÑ C B
L ÐCÑ Ÿ ! B B
†
B  in a neighborhood of , so  is a Lyapunov stable stationary point.

At this point we have established the following implications.

Table 12.6

evolutionarily Nash
stable strategy equil.

neutrally
stable strat.ß à

à ß
Ò Ò

asymp. stable
stat. point

Lyap. stable stat.
stat. point point

That evolutionary stability implies neutral stability, and that asymptotic stability implies
Lyapunov stability, follow directly from the definitions.  The other implications were
established in Theorems 9.3, 10.1, and 12.4.

The properties in bold italics are dynamic stability properties, defined in connection with
the replicator dynamics.  The others are static, game-theoretic stability properties, defined
solely in terms of the payoff function ?ÐBà CÑÞ

We will use the following abbreviations for the properties listed in Table 12.6:
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SP:  stationary point
NE:  Nash equilibrium
LSSP:  Lyapunov stable stationary point
ASSP:  asymptotically stable stationary point
NSS:  neutrally stable strategy
ESS:  evolutionarily stable strategy

As we will see, no implication not entailed by Table 12.6 holds in general.  To confirm
this, we will need examples of the following.

A SP that is not a NE
A NE that is not a LSSP
A NSS that is not an ASSP
 (this will also be an LSSP that is not an ASSP, and a NSS that is not an ESS)
An ASSP that is not a NSS
 (this will also be an LSSP that is not a NSS, and an ASSP that is not an ESS)

We have already seen in (9.7) a SP that is not a NE.  Much of what follows will be taken
up with giving examples of the others.

___________________________________

We used the following in the proof of Theorem 12.1.

12.7  Jensen's Inequality.  If  is a random variable and  is concave upward on an^ ÐDÑ:
interval containing the set of possible values of , and if  and  are both finite,^ I^ I Ð^Ñ:
then

: :ÐI^Ñ Ÿ I Ð^Ñ. (12.8)

Moreover, the inequality (12.8) is strict unless  with probability 1 for:Ð^Ñ œ +^  ,
some constants  and .+ ,

Proof.  Let  be a supporting line for the convex curve  at theC œ +D  , C œ ÐDÑ:
point .  That is,ÐD œ I^ß C œ ÐI^ÑÑ:

+I^  , œ ÐI^Ñ: (12.9)

and  for   So+D  , Ÿ ÐDÑ B − MÞ:

+^  , Ÿ Ð^Ñ:  with probability 1,

and therefore

+I^  , Ÿ I Ð^Ñ: . (12.10)

This inequality holds strictly unless  with probability 1.  Combining+^  , œ Ð^Ñ:
(12.9) and (12.10) gives the theorem.
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13.  Invariance of the dynamics under matrix operations

Before proceeding it will be helpful to establish some reductions that simplify the
analysis of the population dynamics for specific games.  In particular, we show that if the
payoff matrix is multiplied by a positive constant, or if any constant is added to any
column of the payoff matrix, the six static and dynamic stability properties in Table 12.6
are unchanged.  In addition, the orbits of the replicator dynamics are unchanged; all that
changes is the rate at which the population evolves.

For a symmetric 2-player game with  actions and payoff function ,5 ?ÐBà CÑ œ B † EC
consider the game with payoff function  determined by the matrix ,@ÐBà CÑ F œ +E  ,I4

where  is the matrix with 1's in the  column and zeros elsewhere Thus  is theI 4 Þ F4 >2

result of multiplying  by a constant and adding a constant to one of the columns.E

13.2  Proposition.  If  is any  matrix and  where  and  are anyE 5 ‚ 5 F œ +E  ,I + ,4

real numbers, we have, for any  and  in ,B D ?

B † FD œ +B † ED  ,D Þ4 (13.2)

Consequently, for any , , and  in ,B C D ?

ÐB  CÑ † FD œ +ÐB  CÑ † ED. (13.3)

Proof.

B † FD œ B † Ð+E  ,I ÑD

œ +B † ED  ,D B

œ +B † ED  ,D Þ

4

4 4

"

5

4

�

And (13.3) follows:

ÐB  CÑ † FD œ +B † ED  +C † ED  ,D  ,D œ +ÐB  CÑ † EDÞ4 4

Recall the following definitions, from Sections 3 and 4, for an arbitrary payoff matrix E
and .B − ?

B ÐB  CÑ † EB   ! C − Þ is a Nash equilibrium if and only if  for all ?
B ÐB  CÑ † EÐÐ"  ÑB  CÑ   ! C is neutrally stable if and only if  for all  and all% %

sufficiently small .%
B ÐB  CÑ † EÐÐ"  ÑB  CÑ  ! C is asymptotically stable if and only if  for all  and% %

all sufficiently small .%

13.4  Theorem. The Nash equilibria, neutrally stable strategies, and evolutionarily stable
strategies for  are the same as for , as long as  is positive.F œ +E  ,I E +4



EGT for symmetric 2-player games page 21

Proof.  This follows from (13.3) and the definitions repeated just above.

13.5  Proposition.  If , then the replicator dynamics for  are+  ! F œ +E  ,I4

B œ +B Ð/  BÑ † EB Þ†
3 3

3ˆ ‰ (13.6)

Proof.  The replicator dynamics for  areF

B œ B Ð/  BÑ † FB ß†
3 3

3ˆ ‰
and the result follows immediately from (13.3).

13.7  Theorem.  The orbits of the replicator dynamics for  are the same as those for .F E
As a consequence, the stationary points for  are the same as those for , and, if  isF E +
positive, so are the Lyapunov stable stationary points and the asymptotically stable
stationary points.

Proof.  This follows from (13.6); the replicator dynamics for  and  differ only inE F
that those for  have the right side multiplied by the positive constant .F +

Again we note that the replicator dynamics are not identical for  and ; however, theyE F
differ only in that the of evolution for  is  times that for rate F + EÞ

___________________________________

14.  The 2x2 case: dynamics

Here we characterize the replicator dynamics of any two-player symmetric game with
only two actions.  We identify all the stationary points and establish conditions under
which they are Lyapunov stable and asymptotically stable.  In the next section we will
investigate the static equilibrium properties of these points (NE, NSS, ESS).

The replicator dynamics are

B œ B Ð/ EB  B EB†

B œ B Ð/ EB  B EB Þ†
" "

"

# #
#

ˆ ‰
ˆ ‰† †

† †

  and 
(14.1)

Notice first that for any , we have  and thereforeB œ ÒB B Ó − B œ "  B" # # # "?
B œ B† †
# ", and so the replicator dynamics are described completely by

B œ B Ð/ EB  B EB Þ†
" "

"ˆ ‰† † (14.2)
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From Theorem 13.7 we see that we need to study the dynamics only for matrices of the
form

E œ
! !
+ ,” • (14.3)

for real numbers  and , because any 2 2 matrix can be reduced to this form by+ , ‚
subtracting appropriate numbers from the columns (in this case, subtracting the first row
from both rows).  For  of this form, (14.2) becomesE

B œ B B Ð+B  ,B Ñ œ B Ð"  B ÑÐÐ,  +ÑB  ,ÑÞ†
" " # " # " " " (14.4)

It is clear from (14.4) that  is a stationary point if , if , or ifB œ ÒB B Ó B œ ! B œ "" # " "

Ð,  +ÑB  , œ !" .  The following is immediate.

14.5  Proposition.  In the trivial case , all  are stationary points.+ œ , œ ! B − ?#

Otherwise, there are either two or three stationary points in :  and  are stationary?#
" #/ /

points, and, if , ,  is a stationary point.!   " B œ Ò Ó, , +
,+ ,+ ,+

! X

In the rest of this section we will determine, under all possible conditions on  and ,+ ,
what the orbits of the dynamics are, and thus classify the stationary points as unstable
(USP), Lyapunov stable (LSSP), or asymptotically stable (ASSP).

[In the next section we will examine the stationary points for their static stability
properties, classifying them as not equilibria, Nash equilibria (NE), neutrally stable
strategies (NSS), or evolutionarily stable strategies (ESS).]

It is easy to see at the outset that except in the trivial case  (Case 0 below), the+ œ , œ !
orbits must be as in one of the following four pictures, and the dynamic stability of the
stationary points  and  must be as indicated./ ß / ß B" # !

   orbits

USP ASSP —

ASSP USP —

USP USP ASSP

ASSP ASSP USP

/ / B" # !
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[Two additional cases, in which there is an interior stationary point but the orbits on both
sides go in the same direction, are impossible here, because the function
C œ Ð,  +ÑB  ,"  is linear and must change sign at a zero.]

We note also that except in the trivial case , all stationary points are either+ œ , œ !
unstable or asymptotically stable.  We will have to consider  games to find$ ‚ $
nontrivial situations with Lyapunov stable stationary points that are not asymptotically
stable.

Excepting the trivial case there are in fact eight distinct cases for the line+ œ , œ !ß
C œ Ð,  +ÑB  ," ; each leading to one of the orbit diagrams above.

Case 0.  .  In this trivial case all  are stationary points, and they are+ œ , œ ! B − ?#

necessarily Lyapunov stable.

Case 1.  , .  [That is, ],  +  ! Ÿ ! +  , Ÿ !Þ,
,+

Here  for all , so the orbits are as in B above.B  ! B − Ð!ß "Ñ†
" "

Case 2.  ,  +  !ß Ÿ !Þ +  ,   !Þ,
,+ [That is, ]

Here  for all so the orbits are as in A above.B  ! B − Ð!ß "Ñß†
" "

Case 3.    [That is, .],  +  !ß   "Þ ,  +   !,
,+

Here  for all so the orbits are as in A above.B  ! B − Ð!ß "Ñß†
" "

Case 4.    [That is, .],  +  !ß   "Þ ,  + Ÿ !,
,+

Here  for all , so the orbits are as in B above.B  ! B − Ð!ß "Ñ†
" "



EGT for symmetric 2-player games page 24

Case 5.    [That is, .],  + œ !ß ,  !Þ , œ +  !

Here  for all , so the orbits are as in B above.B  ! B − Ð!ß "Ñ†
" "

Case 6.  ,  + œ !ß ,  !Þ , œ +  ![That is, .]

Here  for all so the orbits are as in A above.B  ! B − Ð!ß "Ñß†
" "

Case 7.    [That is, .],  +  !ß !   "Þ +  !  ,,
,+

Here  for  and  for so the orbits are as in D above.B  ! B  B  ! B  ß† †
" " " "

, ,
,+ ,+

Case 8.  [That is, .],  +  !ß !   "Þ +  !  ,,
,+

Here  for  and  for so the orbits are as in C above.B  ! B  B  ! B  ß† †
" " " "

, ,
,+ ,+

Combining these, we get
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14.6  Proposition.  For the replicator dynamics as in (14.1), with  andE œ
! !
+ ,” •

B œ , +! "
,+

Xc d , the orbits and dynamic stability properties of the stationary points
are, except for the trivial case , as shown in Table 14.7.+ œ , œ !

Table 14.7
   orbits Cases

USP ASSP — 2,3,6

ASSP USP — 1,4,5

USP USP ASSP 8

ASSP ASSP USP 7

/ / B

+   !ß ,   !

+ Ÿ !ß , Ÿ !

+  !  ,

+  !  ,

" # !

___________________________________

15.  The 2x2 case: static stability properties

Now we want to place the stationary points on the diagram of implications in Table 12.6;
that is, decide whether they are Nash equilibria, neutrally stable strategies, or
evolutionarily stable strategies.  There are three kinds of stationary point:

For any unstable stationary point, we need to ascertain whether or not it is a Nash
equilibrium.

For any Lyapunov stable stationary point that is not asymptotically stable, we need
to ascertain whether or not it is neutrally stable.  (Such points exist only in the
trivial case )+ œ , œ !Þ

And for any asymptotically stable stationary point, we need to ascertain whether it is
evolutionarily stable, neutrally stable, or only a Nash equilibrium.

Orbit diagram A:  In this case  and , and at least one is strictly positive.+   ! ,   !

/" is an unstable stationary point.  It is a Nash equilibrium if and only if
?Ð/ à / Ñ   ?Ð/ à / Ñ !   + /" " # " ", by Proposition 3.3; that is, if and only if .  So  is a Nash
equilibrium if and only if   This is Case 6 of the previous section.+ œ !Þ
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/# is an asymptotically stable stationary point.  By Theorem 6.1 and its counterpart for
neutrally stable strategies (mentioned at the end of Section 7),  is [evolutionarily,/#

neutrally] stable if and only if  [ , ]  for all  near ; that is, for?Ð/ à BÑ    ?ÐBà BÑ B /# #

B œ B" c d% % % for small positive .  But for such ,

?Ð/ à BÑ  ?ÐBà BÑ œ +  ,Ð"  Ñ  Ð"  ÑÐ+  ,Ð"  ÑÑ

œ Ð+  ,Ð"  ÑÑ

œ Ð+  ,Ñ  ,

#

#

% % % % %

% % %

% %.

This is positive for small positive  if either  or ; but in the situation of% ,  ! , œ !  +
orbit diagram A, one of these conditions holds.  So  is evolutionarily stable./#

Orbit diagram B:  Here  and  and at least one is strictly negative.  The+ Ÿ ! , Ÿ !
situation is symmetric to that of orbit diagram A, with  and  replaced by  and ,+ , , +
respectively.  So the unstable stationary point  is a Nash equilibrium if , and the/ , œ !#

asymptotically stable stationary point  is evolutionarily stable./"

[The transformation from diagram A into diagram B is this:  subtract the second row of A
from both rows, and then exchange the roles of the two players by interchanging the rows
and the columns of the matrix.]

Orbit diagram C:  Here +  !  ,Þ

The unstable stationary point  is a Nash equilibrium if and only if/"

?Ð/ à / Ñ   ?Ð/ à / Ñà !   + /" " # " "that is, if and only if .  So is not a Nash equilibrium.
Similarly, the unstable stationary point  is not a Nash equilibrium./#

The asymptotically stable stationary point  is [evolutionarily, neutrally] stable if andB!

only if  [ , ]  for all  near .  Notice that in this case?ÐB à BÑ    ?ÐBà BÑ B B! !

B œ , + +  , B B! !"
+, c d and  is positive.  Points  near  are of the form

"
+,

!c d,  +  Þ B% % %for small , which may be positive or negative   So  is
[evolutionarily, neutrally] stable if and only if [ , ] 0. But?ÐB  Bà BÑ   !

B  B œ ! "
+, c d% % , and so

?ÐB  Bà BÑ œ
"

Ð+  ,Ñ


! ! , 
+ , + 

œ  œ ß
"

Ð+  ,Ñ +  ,

!
+  ,

!
#

#

#

c d” •” •
c d” •� �
% %

%
%

% %
%

%

which is positive.  So in this case  is evolutionarily stable.B!



EGT for symmetric 2-player games page 27

Orbit diagram D:  Here .+  !  ,

By Theorem 9.3, a stationary point in the interior of  is a Nash equilibrium, so the?#

unstable stationary point  is a Nash equilibrium in this case.B!

The asymptotically stable stationary point  is [evolutionarily, neutrally] stable if and/"

only if  [ , ]  0 for all  near  that is, for all  for?Ð/ à BÑ  ?ÐBà BÑ    B / à B œ " " " c d% %
small positive .  Now  for such , so% % %/  B œ B" c d

?Ð/ à BÑ  ?ÐBà BÑ œ 
! ! " 
+ ,

œ 
+Ð"  Ñ  ,

œ  ÐÐ,  +Ñ  +Ñ

œ Ð,  +Ñ  + Þ

"

#

c d” •” •
c d” •
% %

%
%

% %
% %

% %

% %

0

This is positive for small positive  because  in this case.  So  is evolutionarily% +  ! /"

stable.

Again we could make the transformation used for orbit diagram B to see that  is/#

evolutionarily stable, but we do the calculations as a check.   is [evolutionarily,/#

neutrally] stable if and only if  [ , ]  0 for all  near ; that is, for?Ð/ à BÑ  ?ÐBà BÑ    B /# #

B œ B /  B œ"  c d c d% % % %% for small positive .  For such , , so#

?Ð/ à BÑ  ?ÐBà BÑ œ 
! !
+ , " 

œ 
!

+  ,Ð"  Ñ

œ Ð+  ,Ð"  ÑÑ

œ ,  Ð+  ,Ñ Þ

#

#

c d” •” •
c d” •
% %

%
%

% %
% %

% % %

% %

Since  in this case, this is positive, so  is evolutionarily stable.,  ! /#

The trivial case.  Here  for all  and  and all  are Lyapunov stable,?ÐBà CÑ œ ! B C B − ?#

but not asymptotically stable, stationary points.  A point  is neutrally stable if and onlyB
if  for all  near .  Since these are both zero, all  are neutrally stable.?ÐBà CÑ   ?ÐCà CÑ C B B
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15.1  Proposition.  For the replicator dynamics as in (14.1), with  andE œ
! !
+ ,” •

B œ , +! "
,+

Xc d , the orbits and the static and dynamic stability properties of the
stationary points are as shown in Table 15.2.  In each case, the indicated property is the
strongest that can be asserted.

Table 15.2
   orbits

NE ESS —

USP ESS —

ESS NE —

ESS USP

USP USP ESS

ESS ESS NE
All points in  are NSS.

/ / B

+ œ !ß ,  !

+  !ß ,   !

+  !ß , œ !

+ Ÿ !ß ,  !

+  !  ,

+  !  ,
+ œ , œ !

" # !

#?

Counterexamples to implications not entailed in Table 12.6.   At the end of Section 12
we listed the examples needed to show that only the implications entailed by Table 12.6
hold in general.  We have now found all but one of these in the above analysis of # ‚ #
games:

A SP that is not a NE:  Several cases as shown above.
A NE that is not a LSSP:   in the case B +  !  ,Þ!

A NSS that is not an ASSP:  All points in the trivial case.
An ASSP that is not a NSS:  There are no examples of this among  games.# ‚ #

[In case it is objected that one of the examples exists only in the trivial case, we mention that

for  games with payoff matrices of the form , the situation restricted to the$ ‚ $
! ! !
! ! +
, - .

Ô ×
Õ Ø

face containing  and  is trivial, although the game is not.  For at least some nontrivial/ /" #

values of , ,  , and , all points on this face are neutrally stable stationary points but are+ , - .
not asymptotically stable.  Such games, in which two of the pure strategies behave
identically with respect to each other but differently with respect to a third, are studied
extensively in the author's earlier survey, referred to in the Bibliography.]
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16.  Results and examples on evolutionary and neutral stability

Our main goal for the rest of this survey is to find an example of a game with a point B
that is an ASSP but not a NSS.  In this section we show a relatively simple way to
determine whether an interior stationary point is a NSS or an ESS.

Recall that  is an ESS [resp. NSS] if and only if [resp. ]  for allB − ?ÐBà CÑ    ?ÐCà CÑ?
C B sufficiently near but not equal to  in . (This is the characterization of evolutionary?
stability by local superiority given in Theorem 6.1 and its analog in Section 7.)

Recall that the support  of  is the set of indices  for which   It will beWÐBÑ B 3 B  !Þ3

convenient to consider the set  and .  Notice that ifVÐBÑ œ < − À < Á ! B  < −˜ ™‘ ?5

< œ Ò< ßá ß < Ó − VÐBÑ < œ ! <   ! 3 Â WÐBÑ" 5 3 3
X , then , and  if .�

16.1  Proposition.  Suppose  is a NE of the game determined by B ?ÐBà CÑ œ B ECÞ†
(a)  If  for all , then  is a NSS.?Ð<à <Ñ Ÿ ! < − VÐBÑ B
(b)  If  is an interior point of , then  is a NSS [resp. ESS] if and only if B B ?Ð<à <Ñ Ÿ !?

[resp. ]  for all  ! < − VÐBÑÞ

Proof.  As noted in Section 7,  is an NSS if and only if it is weakly locally superior; thatB
is, if and only if  for near  in .  This is the same as saying that?ÐC  Bà CÑ Ÿ ! C B ?
?Ð<à B  <Ñ Ÿ ! < œ C  B − VÐBÑÞ for sufficiently small   Since
?Ð<à B  <Ñ œ < EB  < E<† † , we have that

B < EB  < E< Ÿ ! < − VÐBÑÞ is a NSS   iff      for (16.2)† †

Similarly, from Theorem 6.1 on local superiority, we have that

B < EB  < E<  ! < − VÐBÑÞ is an ESS   iff      for (16.3)† †

Without loss of generality let Since  is a NE, it follows thatWÐBÑ œ "ßá ß 4 Þ Be f
EB œ -ßá ß -ß - ßá ß - ßc d4" 5

X

where and  for .  Moreover, if  then  for - œ ?ÐBà BÑ - Ÿ - 3  4 < − VÐBÑß <   ! 3  4Þ3 3

So

< EB œ -Ð< â < Ñ  - < â - < Ÿ -Ð< â < Ñ œ !† " 4 4" 4" 5 5 " 5 .

Assertion (a) follows because of (16.2).

If  is an interior NE, then  and , and assertion (b) followsB EB œ -ßá ß - < EB œ !c d †
because of (16.2) and (16.3).



EGT for symmetric 2-player games page 30

16.4  Example.  Consider  where?ÐBà CÑ œ B EC†

E œ Þ
$ %! !
! ) $&
"& ! #)

Ô ×
Õ Ø

Since all the row sums of  are equal, it follows that  satisfiesE B œ " " ""
$

Xc d
EB œ %$ %$ %$ Þ ?Ð/ à BÑ œ 3 œ "ß #ß $ B" %$

$ $
X 3c d   So  for , and thus  is an interior NE.

a.  We show using Proposition 16.1 that  is not a NSS.B

We need only show that  is positive for some  in Such  are?Ð<à <Ñ œ < E< < VÐBÑÞ <†

of the form  for small and .  For such an  we have< œ   <"
")

Xc d% $ % $ % $

< † E< œ  
"

")

$ %! !
! ) $&
"& ! #)  

œ "' %'
"

")

#

#
# #

c dÔ ×Ô ×
Õ ØÕ Ø

: ‘
% $ % $

%
$
% $

% $ %$+ + ,

which is certainly positive for some values of  and .% $

b.  We show incidentally that  is the only interior stationary point.B

For any  we haveA œ A A Ac d" # $
X

EA œ
$A  %!A
)A  $&A
"&A  #)A

Ô ×
Õ Ø

" #

# $

" $

.

If  is an interior stationary point, then all the entries of  equal , becauseA EA A † EA
A œ A Ð/ † EA  A † EAÑÞ†

3 3
3 So we have

$A  %!A œ )A  $&A œ )A  $&Ð"  A  A Ñ" # # $ # " # ,

which implies that

$)A  %(A œ $&" # , (16.5)

and also

$A  %!A œ "&A  #)A œ "&A  #)Ð"  A  A Ñß" # " $ " " #

which implies that

"'A  ')A œ #)Þ" # (16.6)

One can check that (16.7) and (16.8) imply that , and the assertionA œ A œ" #
"
$

followsÞ
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A plot of one orbit, generated using MATLAB, suggests that  is (globally)B
asymptotically stable:

We will see in Section 17 that  is indeed an ASSP. Note that because  is not a NSS,B B
and thus not an ESS, the Kullback-Leibler relative entropy (see Section 12) will not be a
Lyapunov function.

16.7  Example.  Weibull's Example 3.9 is the game  where?ÐBà CÑ œ B † EC

E œ Þ
" & !
! " &
& ! %

Ô ×
Õ Ø

Here arguments similar to those in Example 16.4 show that the point  isB œ $ ) ("
")

Xc d
the unique interior SP and is a NE but is not an NSS; and the plot of an orbit suggests that
B is asymptotically stable.

We got Example 16.4 from this example by using the “centering” transformation suggested
by Hofbauer and Sigmund (Exercise 7.1.3, p. 68).  They observe that if  is aB œ B âBc d" 5

X

stationary point of the replicator dynamics for , then ?ÐBà CÑ œ B † EC C œ O - B â- Bc d" " 5 5
X

(with ) is a stationary point of the replicator dynamics for ,O œ "Î - B ?ÐBà CÑ œ B † FC�
"

5

4 4

where , œ Þ34
+
-
34

4

It turns out that checking for an ASSP is much simplified if the interior NE in question is the
center .  This happens when, as in Example 16.4, the row sums of  are all equal."

5
Xc d"â" E

The transformation that moves  to  makes the row sums of  equal.B C œ "â" E"
5

Xc d
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16.8  Example.  On page 71 of Hofbauer and Sigmund's book is the matrix

E œ Þ
! ' %
$ ! &
" $ !

Ô ×
Õ Ø

This matrix has constant row sums, and as a result  is the unique interiorB œ " " ""
$

Xc d
NE.  As in Example 16.4 we can check that it is not a NSS:  specifically, for
< œ   < † E< œ &  )c d% $ % $ % $X # #, we have that , which is both positive and negative
in any neighborhood of .  Here the plot of some orbits is as follows.!

This is strikingly different from the pictures for the previous two examples; nevertheless,
as we will see, the center point  is asymptotically stable.B

Thus, once we have proved asymptotic stability in the three examples of this section, we
will have completed the program, set out at the end of Section 15, of showing that none
of the implications not entailed in Table 12.6 hold in general.

___________________________________

17.  Proving asymptotic stability using linearization

As we noted at the end of Example 16.4, when  is not a NSS we cannot prove that  isB B
an ASSP using the Kullback-Leibler relative entropy as a Lyapunov function.  (If we
could, then  would be an ESS and thus a NSS.)  We could try to find another LyapunovB
function in such a case, but instead we linearize the replicator dynamics and use Theorem
11.3.

This turns out to be simplified greatly if the row sums of the matrix  are all equal, inE

which case  is the unique interior SP, and it is a NE.B œ " "â""
5

Xc d
As always, the game is determined by  where  is an arbitrary?ÐBà CÑ œ B † EC E œ +c d34

5 ‚ 5 B œ 0ÐBÑ œ 0 ÐBÑâ0 ÐBÑ† matrix.  The replicator dynamics are ; that is,c d" 5
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B œ 0 ÐBÑ œ B Ð/ † EB  B † EBÑ†
3 3 3

3 . (17.1)

The Jacobian of  at  is the  matrix  whose  entry is .0 B 5 ‚ 5 N œ N0ÐBÑ 34 ÐBÑ`0
`B

3

4

17.2  Proposition.  `
`B

3
34

4
� �/ † EB œ + Þ

Proof  .  / † EB œ + B â + B Þ3
3" " 35 5

17.3  Proposition.  `
`B

4 X
4
� �B † EB œ / † ÐE  E ÑBÞ

Proof.  (terms not involving B † EB œ + B  + B B  + B B  B ÑÞ44 4< 4 < =4 = 4 44
#

<Á4 =Á4

� �
Therefore

`

`B
B † EB œ #+ B  + B  + B

œ + B  + B

œ Ð+  + ÑB

4
44 4 4< < =4 =

<Á4 =Á4

<œ" =œ"

5 5

4< < =4 =

<œ"

5

4< <4 <

� � � �
� �
�

This is precisely the  row of  times , or 4 E  E B / † ÐE  E ÑBÞ>2 X 4 X

17.4  Proposition.  With  as in (17.1),0

`0

`B
ÐBÑ œ

/ † EB  B † EB  B Ð+  / † ÐE  E ÑBÑ 4 œ 3ß

B Ð+  / † ÐE  E ÑBÑ 4 Á 3
3

4

3 3 X
3 33

3 34
4 Xœ if 

if .

Consequently, if  is an interior stationary point, so that , thenB / † EB  B † EB œ !3

`0

`B
ÐBÑ œ B Ð+  / † ÐE  E ÑBÑÞ

3

4
3 34

4 X (17.5)

Proof.  This is immediate from Propositions 17.2 and 17.3.

17.6  Corollary.  Suppose the row sums of  are all equal.  Then  is anE B œ "â""
5 c d

interior stationary point and a Nash equilibrium, and

`0 "

`B 5
ÐBÑ œ Ð5+  4 E  E Ñ

3

4
# 34

>2 X column sum of . (17.6)
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Proof.  If the row sums all equal , then when , we have = B œ "â" / † EB œ" =
5 5

3c d
for all , and so by Proposition 3.6,  is a NE.  Also, in (17.5)  and3 B B œ3

"
5

/ † ÐE  E ÑB 4 E  E ß 44 X >2 X >2 is the  row sum of which equals the  column sum
because  is symmetric.E EX

17.7  Example.  Returning to Example 16.4, we have

E œ
$ %! !
! ) $&
"& ! #)

Ô ×
Õ Ø.

The row sums all equal 43 and  is the unique interior SP and a NE.  We sawB œ " " ""
$ c d

in 16.4 that it is not a NSS.  It is asymptotically stable if the eigenvalues of  allN0ÐBÑ
have negative real parts.  We have

E E œ '" *" "!' Þ
' %! "&
%! "' $&
"& $& &'

X
Ô ×
Õ Ø c d and the column sums are 

It follows from 17.6 that

N0ÐBÑ œ
"

*

&# #* "!'
'" '( "
"' *" ##

Ô ×
Õ Ø.

One can check that the eigenvalues of this matrix are  and   They all  „ 3Þ%$ #
$ $ $

"! &È
have negative real parts, and so by Theorem 11.3,  is an ASSP.B

Thus, at last, we have completed the set of examples showing that no implications other
than those entailed by Table 12.6 are true in general.

17.8  Example.  The same holds for Example 16.8, where we have

E œ Þ
! ' %
$ ! &
" $ !

Ô ×
Õ Ø

The row sums are equal,  is the unique interior SP and a NE, and we showedB œ " " ""
$ c d

that  is not a NSS.  ButB

E  E œ # "" $ Þ
! $ &
$ ! )
& ) !

X
Ô ×
Õ Ø c d; the column sums are 

It follows from 17.6 that
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N0ÐBÑ œ ß
"

*

# ( "&
( "" "#
" # $

Ô ×
Õ Ø

and the eigenvalues of this are  and ; all have negative real parts.  So again  „ 3# "
$ $ $

#È
we have an ASSP that is not a NSS.

___________________________________
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