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Abstract

The Shortest Path with Recourse Problem involves finding the
shortest expected-length paths in a directed network each of whose
arcs have stochastic traversal lengths (or delays) that become known
only upon arrival at the tail of that arc. The traveler starts at a given
source node, and makes routing decisions at each node in such a way
that the expected distance to a given sink node is minimized. We
develop an extension of Dijkstra’s algorithm to solve the version of
the problem where arclengths are nonnegative and reset after each arc
traversal. All known no-reset versions of the problem are NP-hard.
We make a partial extension to the case where negative arclengths are
present.
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1 Introduction

The stochastic shortest path problem has as input a directed network G =

(N, A) with node set N and arc set A of cardinalities n and m, respectively.

Each arc (i, j) of G has length Lij which is a random variable taking on rij

finite values l1ij < . . . < l
rij

ij . The traveler starts at a source node s, and

is interested in reaching a destination node t using a path having minimum

expected length.

There are two popular versions of the stochastic shortest path problem

that differ in the amount of information that a traveler has about the arc-

lengths as the network is traversed. In the expected shortest path problem,

the traveler knows all arclengths in the network before starting the traversal,

and hence always chooses the deterministic shortest (s, t)-path for that par-

ticular realization of the network. This problem is surveyed in [4], Section

6. Although determination of the path knowing each particular realization is

a simple shortest path computation, actually computing the expected path-

lengths over all realizations is NP-hard even in the case where the arcs take

on only 0-1 values. In the shortest expected path problem, the traveler is

aware of no arclengths while traversing the network, and thus must take the

predetermined (s, t)-path that has shortest expected length. This problem

involves simply finding the shortest (s, t)-path in G using expected arclengths

for each arc, and the expected value here is just the expected length of this

path.

The shortest path with recourse (SPR) problem provides an intermediate

version that is more realistic in routing situations where only local traffic

information is available. In this version the traveler is aware of the length

of an arc only upon arrival at the tail of that arc. Choices are made at

each node of the path based on knowledge of both the overall stochastic

structure of the network and the immediate realizations of the lengths of the

arcs pointing away from the node currently visited, in such a way as to reach

the destination in the minimum expected time. We call the corresponding
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traversal a recourse path.

There are two ways the various SPR models differ in terms of the stochas-

tic structure of the network. The first is in the dependence of the individual

arclength values.

Arc-independent arclengths: Associated with each arclength lkij is a proba-

bility pk
ij. Arc (i, j) independently takes random length Lij, with proba-

bilities

P [Lij = lkij] = pk
ij, k = 1, . . . , rij.

Node-independent arclengths: Associated with each node i is a set of ri

arclength vectors for the forward star arcs of that node: lki = (lkij : (i, j) ∈
A) and probabilities pk

i , k = 1, . . . , ri. Each node i independently gives the

arcs pointing out of it a set of arclength realizations L = (Lij : (i, j) ∈ A)

with probabilities

P [Lij = lkij, (i, j) ∈ A] = pk
i , k = 1, . . . , ri.

Dependent arclengths: There is a collection of r arclength vectors for the

entire network lk = (lkij : (i, j) ∈ A) and probabilities pk, k = 1, . . . , r,

and the network takes on random arclengths L = (Lij : (i, j) ∈ A) with

probabilities

P [Lij = lkij, (i, j) ∈ A] = pk, k = 1, . . . , r.

Markov arclengths: The arclengths are associated with a Markov process M
denoted by states k = 1, . . . , r and an r × r transition probability matrix

M . Each state k is associated with a set lk = (lkij : (i, j) ∈ A) of arclength

realizations for that state. The process M starts in some initial state σ0

— usually determined from the steady-state probabilities of the network

— and after each arc traversal the system moves from state σi to σi+1

according to the transition probabilities given by M . One can likewise

define this process for node-independent or arc-independent models, by
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giving independent Markov processes Mi or Mij on each node i or arc

(i, j) of the network, respectively.

The other way SPR problems are distinguished is by whether the arclengths

are static or change as the network is traversed.

No reset: The arclengths remain fixed throughout the traversal, that is, once

the arclengths at a node are known they will look the same upon further

revisits to that node.

Reset: The arclengths take on new independent (and unknown) values from

the same distribution each time an arc is traversed.

We make several remarks at this point:

• With the reset assumption on the stochastic network behavior the de-

pendent and node-independent models become identical. Thus we will

consider only the arc- and node-independent models when we analyze

the reset version of the problem.

• The Markov chain model has properties of both the reset and no-reset

models. While there is clearly an arclength reset occurring, it is a state-

dependent reset. As we shall see below, the complexity classification of

Markov models fits more appropriately into the no-reset class of SPR

problems. An interesting exception will be analyzed in Section 5.

• Technically, a recourse “path” may well have repeated nodes and arcs.

Take the example given in Figure 1. Arcs (1, 2), (2, 3), and (3, 1) have

deterministic length 1 and arc (2, 4) has length 0 with probability 1
2

and 10 with probability 1
2
. Then the optimal strategy is to take the

cycle (1, 2), (2, 3), (3, 1) as long as arc (2, 4) has the value 10 and (2, 4)

when it has the value 0, for an expected length of 4 for an (s, t)-recourse

path. In this case the path could repeat the cycle (1, 2), (2, 3), (3, 1)

any number of times. Paths can repeat arcs in the no-reset versions of

the problem as well, although the number of times this is done in an
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optimal recourse path will be bounded by the number of arcs in the

network (since the repeat traversal of any arc is useless unless at least

one new arclength is discovered in the interim).

1

1
1

0,10
s t1 2 4

3

Figure 1: An SPR solution with cycles

There have been a number of studies of recourse path problems, using a

wide variety of models. Croucher [3] was one of the first to consider such a

problem. In his model the network has randomly failing weighted arcs, and

at each node one specifies a predetermined arc to be traversed unless it fails,

in which case one of the remaining arcs is traversed at random. He gives a

polynomial-time algorithm when the network is acyclic and arcs fail indepen-

dently. Andreatta and Romeo [1] also consider an arc-failure model, but when

an arc fails a fixed recourse path to t is traversed. They give a polynomial

algorithm for general networks when arcs fail independently. Both of these

problems can be reduced to the appropriate model given here, and the com-

plexity classifications will be the same as those for these models. Cheung [2]

considers the general arc-independent reset model, and gives label-correcting

iterative approximation methods for solving the problem. Polychronopoulos

and Tsitsiklis [8] consider both the dependent and arc-independent models in

a no-reset context, giving complexity results, non-polynomial algorithms, and

heuristics. Psaraftis and Tsitsiklis [9] study the node-independent Markov

model, giving a polynomial-time algorithm for acyclic networks with loops

— or equivalently, waiting states — at nodes. Hall [6] and Miller-Hooks [7]

consider slightly different models, where traversal times and routing decisions

are based on time-of-arrival at a node, and stochastic behavior of an arc is
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known only upon traversal of that arc. We will not consider their models in

this paper.

We next turn to the intractability results for SPR. (The reader is referred

to [5] for definitions of NP, NP-hardness and NP-completeness.) It turns

out that the primary model assumption that makes the SPR problem NP-

hard is the no-reset assumption. Polychronopoulos and Tsitsiklis [8] give a

reduction for the dependent model, for which the NP-hardness result applies

to the arc- and node-independent models as well. The reduction is from

Directed Hamiltonian Path. Briefly, we start with directed network

G = (N,A) for which it is desired to find a directed path going through all

nodes of G. We attach a new source node s to each node of G, and in turn

attach each node of G to a new sink node t. The arcs to t are given stochastic

lengths 0 or M for some large number M (e.g., greater than n) with one-half

probability each, and every other arc is given deterministic length 1. Then

it is clear that the optimal recourse path from s to t is one that is prepared

to visit every node of G so as to maximize the probability of finding an arc

to t with length 0. That is, the optimal strategy is to follow a Hamiltonian

path if one exists.

Note, by the way, that even in the reset model, if we insist that the

optimal solution is a bona fide path — that is, no repeated vertices are

allowed — then the above construction establishes the NP-hardness of this

model as well. We also observe the interesting fact that the node- and arc-

independent no-reset models are not known to be in NP, for it is not clear

that there is a polynomial-length description of the optimal policies in either

case.

Many of the papers mentioned above give algorithms for recourse prob-

lems that rely on the underlying network G being acyclic. For arc- and node-

independent models, the reset and no-reset versions of SPR are essentially

equivalent in the context of acyclic networks. Thus the solution methods

given in this paper also work for no-reset models on acyclic networks with

arc- and node-independence.

6



It is tempting from this discussion to assume that the acyclic property is

what makes SPR easier. We give a new complexity result to show that this

is not true in general. Define SPRADBN to be the SPR problem whose

input is an acyclic network with dependent binary (0-1) arclengths having

no reset, and for which we wish to determine whether there exists a recourse

path with length 0.

Lemma 1 SPRADBN is NP-complete.

Proof That SPRADBN is in NP was proved in [8], Theorem 3. To prove

the NP-hardness we use a reduction from 3SAT. Input for 3SAT is a set

E = {C1, . . . , Cr} of clauses in the Boolean variables x1, . . . , xl with each

clause Ci consisting of variables yi1, yi2, yi3, where each yij is either xw or x̄w

(= complement of xw) for some variable xw. The expression E is satisfiable

if there exists a true-false assignment to the variables x1, . . . , xl that results

in each clause having at least one true term.

We construct the network G and the stochastic model as follows: The

nodes of G are ui, vi, and v̄i for i = 1, . . . , l, and additional node t. We set

s = u1, and associate each vi and v̄i with the symbol xi and x̄i. The arcs of

G are (ui, vi), (ui, v̄i), (vi, t), and (v̄i, t) for i = 1, . . . , l, and (vi, ui+1), and

(v̄i, ui+1) for i = 1, . . . , l − 1. Figure 2 gives the construction. There are r

states, with state i giving the arcs (vw, t) or (v̄w, t) the value 0 corresponding

to each xw or x̄w in clause Ci, giving all other arcs adjacent to t the value 1,

and giving all arcs not adjacent to t the value 0. Each state is realized with

the same probability 1/r.

Now any path from s to t must alternately go through ui and one of vi

or v̄i until at some point it takes its final arc from some vw or v̄w to t. This

path will have length 0 if and only if the network state corresponds to a

clause Ci having as one of its members a variable xw or x̄w corresponding

to this final arc. It follows that the only way to guarantee that the path

will eventually go through a node vi or v̄i having this property is to choose a

sequence of vi or v̄i corresponding to a satisfying assignment for E . Thus the
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Figure 2: The reduction from 3SAT

problem of determining whether G has a recourse path of expected length 0

is NP-complete.

All the above SPR problems using Markov-chain models turn out to be

NP-hard as well. We can use the same reductions as we gave for the non-

Markov models: simply construct the Markov chain that has two states (for

the arc- and node-independent reduction given above) or r states (for the

dependent reduction given above) with equal but very small probability of

moving from state to state, and large probabilities of remaining in the same

state. Then the Markov chain — using the equilibrium probabilities as the

initial probabilities — essentially simulates the associated non-Markov no-

reset model, and so the reductions work here as well.

In Section 3 we show that if the arclength realizations lkij are all nonneg-

ative, and reset occurs, then the SPR problem has a polynomial algorithm.

This algorithm is based on the primal-dual method of solving deterministic

shortest path problems, and yields a Dijkstra-like algorithm to find SPRs.

Table 1 now summarizes the complexity status of the problems of SPR for

the different combinations of dependence, reset, and acyclicness. In Section

4 we discuss a partial extension of our algorithm to networks with negative

arclengths, and in Section 5 we show how a modification of the Psaraftis and

Tsitsiklis Markov model can be solved using the method given in this paper.
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no
reset reset

arc ind. P 3 P 1

node ind. P 3 P 1

depend. NPC5 P 4

no
reset reset

arc ind. NPH6 P 2

node ind. NPH6 P 2

depend. NPC6 P 4

a. Acyclic networks b. Networks with cycles

P=polynomial, NPC=NP-complete, NPH=NP-hard
1=Section 2, 2=Section 3 (nonnegative weights only)

3=reduces to reset problem, 4=reduces to node-independent case
5=Lemma 1, 6=proved in [8]

Table 1: Complexity results for SPR

2 A linear programming formulation for the

SPR problem

Let network G together with nonnegative arclength realizations lkij and as-

sociated probabilities pk
ij or pk (for the independent and dependent models,

respectively) be given and suppose we want to find the SPR from node s

to node t. We assume that there exist paths from every node to t, since

we can delete any irrelevant parts of the network. For each node i we use

A(i) = {j : (i, j) ∈ A} to denote the forward star of i, and B(i) = {j :

(j, i) ∈ A} to denote the backward star of i. We begin by giving conditions

under which an optimal solution can be found for SPR. They generalize the

Bellman equations for the deterministic shortest path problem.

Lemma 2 Let G have arclength realizations satisfying the property that for

every directed cycle C,
∑

(i,j)∈C l1ij > 0, and let vi, i ∈ N , be an assignment

of real numbers to the nodes of G. Then the vi represent the expected cost of

an optimal recourse path from i to t for every i if and only if they satisfy the

following set of equations:

vt = 0 (1)

vi = E

[
min

j∈A(i)
{Lij + vj}

]
i 6= t. (2)
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Further, for any set of values satisfying (1) and (2), the optimal recourse

path can be found using the traversal strategy that consists of choosing, at

each node i 6= t, any arc (i, j) for which Lij + vj is the minimum value

indicated by (2).

Proof That the set of expected recourse-path values satisfy (1) and (2)

follows immediately from the definition. Conversely, suppose we have a set of

vi that satisfy (1) and (2). Note that vi < ∞, since any path from i to t will

have finite expected length, which in turns bounds vi above. Consider any

strategy chosen according to the second part of the lemma. This is a standard

optimizing strategy for the associated Markov decision process, with states

corresponding to the pair (i, R), i ∈ N and R is a realization of arclengths

in A(i), decisions corresponding to the associated arc to traverse, and the

penalties and transition probabilities corresponding to the arclengths and

distribution of the network. Further, any solution to (1) and (2) results in

values vi that represent the minimum expected loss from this strategy when

starting from node i (see, for example, [10], Chapter III, Theorem 1.2). It

only remains to show that this strategy actually results in a recourse path

to t, that is, t is reached with probability 1. Suppose not. Then there is

some positive probability that the path will reach some node i from which

the strategy will never leave a subset S of nodes not containing t. But this

means that, starting at node i, the strategy will, with probability 1, pass

through an infinite number of cycles, each of which by assumption will have

positive weight. Thus vi will have value ∞, a contradiction.

Lemma 2 gives us a compact way of presenting the complete set of optimal

strategies, and so the optimal policy can be described in polynomial space.

To illustrate the lemma, consider the example in Figure 3. Each of the

arcs has two states with arclength realizations as marked, and each of the

arclengths is realized independently with probability 1
2
. The numbers at the

nodes are the values of vi in the solution to (1) and (2). The optimal path

can be read off from these numbers as follows:
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Figure 3: An SPR example

At node 1: Choose arc (1,2) under any realization.

At node 2: Given realizations L23 and L24 for arcs (2,3) and (2,4), choose

the arc that has the smaller of the values L23 + 8 and L24.

At node 3: Given realizations L31 and L34 for arcs (3,1) and (3,4), choose

the arc that has the smaller of the values L31 + 9 and L34.

It will be instructive for later discussion to give an explicit procedure, based

on an idea by Cheung [2], for computing vi using Equation (2). To do this,

let (i, j) be an arc and let k = (kiw : (i, w) ∈ A) be a set of state indices on

the arcs of the forward star of i, with 0 ≤ kiw < riw, w 6= j, and 0 < kij ≤ rij.

Define the event

Eij(k) = [L : Lij = l
kij

ij , Liw ≥ lkiw+1
iw , w ∈ A(i) \ {j}]. (3)

In the independent case the probability of this event is

P [Eij(k)] = p
kij

ij

∏

w∈A(i)\{j}

riw∑

κ=kiw+1

pκ
iw

and in the dependent case it is

P [Eij(k)] =
∑

r : lr ∈ Eij(k)

pr.
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We can now define the procedure to compute the right-hand-sides in (2).

Procedure Bellman(v̂, i)

Input: Node values v̂j, j ∈ N , and node i 6= t

Output: V = E

[
min

j∈A(i)
{Lij + v̂j}

]

Procedure: Let M1 ≤ . . . ≤ Ma be an ordering of the values

{lκij + v̂j : j ∈ A(i), κ = 1, . . . , rij} in nondecreasing order, where

a =
∑

j∈A(i) rij. Note that the arclength values of an individual arc

will appear in increasing order in this sequence.

Set V = 0 and initialize index vector k = (kij : j ∈ A(i)) ≡ 0.

for ξ = 1, . . . , a do

Let lκij be the arclength associated with the value Mξ. Set

kij = κ and define

ρκ
ij = P [Eij(k)]. (4)

Add ρκ
ijMξ to V .

To summarize: For each arc (i, j) and each index κ = 1, . . . , rij, the number

ρκ
ij represents the probability that arc (i, j), with length lκij, will be chosen

as the arc from which we leave node i. This happens precisely when the

associated value lκij + v̂j is minimum among the values Liw + v̂w, w ∈ A(i),

and the associated event Eij(k) describes the set of realizations for which

this happens. Procedure Bellman simply allocates each realization to the

appropriate event P [Eij(k)] in nondecreasing order of the expected length

lκij + v̂j of the traversed path from i, with the components of k keeping track

of the last index for which the arc (i, j) had the minimum value l
kij

ij + v̂j in

this ordering.
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As an example of the procedure, consider the evaluation of Bellman(v̂, 2),

where the v̂ are as given in Figure 3. The Mξ’s are ordered 1+0,1+8,5+8,17+0.

Applying Bellman(v̂, i) produces the following set of k, ρκ
ij, and cumulative

values of V :

iteration k23 k24 arc ρκ
ij V

1 0 1 (2, 4) 1
2

1
2
(1 + 0) = 1

2

2 1 1 (2, 3) 1
4

1
2

+ 1
4
(1 + 8) = 11

4

3 2 1 (2, 3) 1
4

11
4

+ 1
4
(5 + 8) = 6

4 2 2 (2, 4) 0 6

Most SPR papers have used formulae analogous to (1) and (2) for finding

optimal recourse paths. Bellman’s Procedure will actually yield a polynomial-

time solution for SPR — with the single exception of the dependent no-reset

version — whenever G is acyclic, since then (1) and (2) can be solved in

reverse topological order. Bellman’s Procedure can also be used to verify

the correctness of a set of expected distance values, as this just involves

checking if the value computed by the procedure matches the actual value.

It does not immediately give an efficient method for finding these values in

non-acyclic networks, since the values in a cycle cannot be unambiguously

computed. We can, however, use the constructs of Bellman’s Procedure to

build a Dijkstra-like algorithm for solving SPR on networks with cycles.

Henceforth we will deal exclusively with the reset model. In this context,

we can give a linear programming formulation for SPR motivated by the

characterization in Lemma 2. Let R be the set of realizations of arclengths

for G, and for each state R ∈ R let pR be the probability of state R being

realized. For node i, let vi represent the expected distance of an optimal

recourse path from i to t, and for node i and state R ∈ R, let uR
i represent

the part of the expectation in (2) corresponding to seeing state R upon

reaching node i. Consider the following linear program for finding the vi and
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uR
i values:

max z = vs

vt = 0

SPRLP : vi =
∑

R∈R
uR

i pR i ∈ N \ {t}

uR
i ≤ lRij + vj (i, j) ∈ A, i 6= t, R ∈ R

where lRij is the length of arc (i, j) under realization R. We will in fact find

a solution to SPRLP that simultaneously maximizes vi for every i 6= t, and

therefore satisfies (1) and (2).

SPRLP has an exponential number of both variables and constraints,

so that it cannot be solved directly as an LP — even using delayed column

or constraint generation — without requiring exponential storage. We can,

however, solve SPRLP by a Dijkstra-like algorithm based on the primal-dual

method of solving LPs.

The dual to SPRLP has variables αi, i ∈ N , corresponding to the expec-

tation equations, and xR
ij, (i, j) ∈ A, R ∈ R, corresponding to the inequalities

on the uR
i .

min w =
∑

(i,j)∈A

∑

R∈R
lRijx

R
ij

SPRD : αj =
∑

i∈B(j)

∑

R∈R
xR

ij +

{
1 j = s
0 j ∈ N \ {s, t}

pRαi =
∑

j∈A(i)

xR
ij i ∈ N \ {t}, R ∈ R

xR
ij ≥ 0 (i, j) ∈ A, R ∈ R.

The interpretation of the variables in SPRD is instructive. The variable αi

represents the expected number of times the recourse path encounters node i,

and the variable xR
ij represents the expected number of times the path passes

across arc (i, j) with the current state being R.
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The complementary slackness conditions relate the xR
ij to the inequality

constraint in SPRLP :

xR
ij > 0 only when uR

i = lRij + vj

holds for all (i, j) ∈ A, R ∈ R. We will call such xR
ij admissible.

3 A primal-dual algorithm for SPR with re-

set and nonnegative arclengths

Although the linear programming formulation given in Section 2 cannot be

solved explicitly, we can construct a polynomial-time solution algorithm by

generalizing Dijkstra’s algorithm using a primal-dual format. To start the al-

gorithm, we first note that when arclengths are nonnegative, SPRLP always

has a feasible starting solution obtained by setting all vi and uR
i variables

equal to zero. The algorithm proceeds by raising all of the uR
i variables

whose R is not associated with an admissible variable simultaneously by

the same amount, adjusting the vi’s so that the expectation equations still

hold, and creating admissible variables xR
ij whenever one of the inequalities

uR
i ≤ lRij +vj becomes an equality. A general stage of the algorithm is defined

by a set of feasible values v̂i, i ∈ N . The admissible xR
ij are obtained by ap-

plying Bellman(v̂, i) to each node. Each ξ in the iterative loop corresponds

to an arc (i, j), an index κ associated with an arclength realization of (i, j),

and an event Eij(k) that represents the set of states R for which arc (i, j) will

be taken from node i when in state R. The variables xR
ij, R ∈ Eij(k) are the

admissible variables associated with the pair (i, j) and κ, and the value of uR
i

for events R ∈ Eij(k) is set to lκij + v̂j. Since the v̂i values are dual feasible

but not necessarily optimal, then the inequality v̂i ≤ E
[
minj∈A(i){Lij + v̂j}

]

may not hold at equality. If this is the case, then the cumulative value of V

computed in the iterative loop will eventually exceed v̂i. Let k be the set of

indices obtained in the algorithm immediately before this occurs. Then the
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remaining uR
i will be set to the same value ûi chosen such that

v̂i =
∑

j∈A(i)

kij∑

κ=1

(lκij + v̂j)ρ
κ
ij + ûiηi, (5)

where ρκ
ij is given by (4) and

ηi = 1− ∑

j∈A(i)

kij∑

κ=1

ρκ
ij. (6)

We note that the Eij(k)’s partition the set of events R for which some xR
ij is

admissible, so that the ρκ
ij and ηi are all nonnegative. The value of ηi is 0

whenever every state is associated with some admissible xR
ij, j ∈ A(i).

We improve the current solution by simultaneously raising all uR
i asso-

ciated with inadmissible variables xR
ij, while updating v̂ to maintain dual

feasibility and equality of constraints corresponding to admissible variables.

In particular, we compute improvement direction y = (yi : i ∈ N) such that

v̂ + ∆y will continue to satisfy the equalities uR
i = lRij + vj for all admissible

variables xR
ij, and so that the values of all other uR

i will increase by the same

amount ∆. Now for all admissible xR
ij we have

uR
i = lRij + v̂j + yj∆,

and so we must maintain

v̂i+yi∆ =
∑

j∈A(i)




∑

R: xR
ij admissible

(lRij + v̂j + yj∆)pR +
∑

R: xR
ij inadmissible

(ûi + ∆)pR


 .

By combining the events in this equation using the Eij(k) determined by (3)

we get

v̂i + yi∆ =
∑

j∈A(i)

kij∑

κ=1

(lκij + v̂j + yj∆)ρκ
ij + (ûi + ∆)ηi.
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Subtracting Equation (5) leaves only the ∆ terms. Considering the associated

coefficients, we get the following set of equations:

yi =
∑

j∈A(i) ρijyj + ηi, i ∈ N \ {t}

yt = 0
(7)

where

ρij =
kij∑

κ=1

ρκ
ij (8)

and ηi is defined by Equation (6). Intuitively, ρij is the probability that arc

(i, j) will be the arc traversed when node i is reached, considering only the

set of events processed so far, and ηi is the remaining probability not yet

assigned to traversals from node i.

To give the next lemma, we define Gρ = (V, Aρ), associated with the

current ρij values, as the subnetwork whose arcs are those (i, j) with ρij > 0.

We call Gρ t-reachable if every arc of Gρ is on some directed path to t, and

define Vρ to be the set of nodes (including t) that can reach t through arcs

in Gρ.

Lemma 3 Let ρ have the property that Gρ is t-reachable. Then the set of

equations (7) always admits a nonnegative solution y = (yi : i ∈ N \ {t})
having the property that yi < 1 if and only if i ∈ Vρ.

Proof It is more convenient to write system (7) as

yi −
n∑

j=1

ρijyj − ηiµ = 0, i ∈ N \ {t}
yt = 0 (9)

µ = 1

where ρij = 0 whenever j /∈ A(i). For convenience renumber the nodes in

Vρ \ {t} as 1, . . . , q and t = n. Since Gρ is t-reachable, then ρij must be 0 if
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either i or j is not in Vρ. The matrix associated with system (9) is therefore

A =




1 −ρ12 · · · −ρ1,q 0 · · · 0 −ρ1,t −η1

−ρ21 1 · · · −ρ2,q 0 · · · 0 −ρ2,t −η2
...

...
. . .

...
...

...
...

...
−ρq,1 −ρq,2 · · · 1 0 · · · 0 −ρq,t −ηq

0 0 · · · 0 1 · · · 0 0 −1
...

...
...

...
. . .

...
...

...
0 0 · · · 0 · · · 1 0 −1
0 0 · · · 0 0 · · · 0 1 0
0 0 · · · 0 0 · · · 0 0 1




.

The definitions of ρij and ηi imply that in the first q rows all off-diagonal

elements of A are nonpositive and all rows sum to 0. Suppose we start to

row reduce the system (9) by pivoting on the first q diagonal elements, and

let A1, A2, . . . , Aq be the corresponding sequence of matrices. It is clear that

each matrix in the sequence will continue to have the two properties given

above, and in addition the values of ρw
ij, i 6= j will always be nondecreasing as

long as i and j are greater than w. Further, for any such i and j, if ρw−1
iw > 0

and ρw−1
wj > 0 then ρw

ij > 0. By induction it follows that ρw
ij > 0 if and only if

there is a directed path from i to j in Gρ all of whose intermediate vertices

have index less than or equal to w. Since every node in Vρ \ {t} must have

at least one path to t, it also follows that row w of Aw must have at least

one j > w with ρwj > 0. Therefore the wth diagonal element of Aw is also

positive, and so the pivot can always be performed.

From the above discussion we get that for the final matrix Aq, ρq
it > 0

for i = 1, . . . , q, and since the row sums are 0 it follows that 0 ≤ ηq
i < 1 for

i = 1, . . . , q. By setting yi = ηq
i , i = 1, . . . , q, yi = 1, i = q + 1, . . . , n − 1,

yt = 0 and µ = 1 we obtain a y that satisfies the conditions given by the

lemma.

We can now proceed with the dual update. This involves finding the

largest ∆ for which the set of node values v̂i +∆yi is still feasible to SPRLP ,

and requires in turn that for all inadmissible variables xR
ij,

ûi + ∆ ≤ lRij + v̂j + yj∆.
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In particular, for every inadmissible xR
ij for which yj < 1 we must have

∆ ≤ lRij + v̂j − ûi

1− yj

.

We need not check every R of this sort, however, as the only thing that dif-

ferentiates these inequalities is the arc (i, j) and the values lRij. Further, from

the procedure for determining admissible variables given at the beginning of

the section, we need only check the values l
kij+1
ij corresponding to the small-

est arclength associated with an inadmissible variable. Now an arc (i, j) can

only be inadmissible if ηi > 0, and this in turn implies that all arcs pointing

out of i have kij < rij. Further, from Lemma 3 we have yj < 1 if and only if

j ∈ Vρ. The value of ∆ can thus be computed as

∆ = min





l
kij+1
ij + v̂j − ûi

1− yj

: (i, j) ∈ A with ηi > 0 and j ∈ Vρ



 . (10)

Since there are paths from every node to t, it follows that if there is not

already an arc (i, j) ∈ Eρ with ηi > 0 then any arc (i, j) coming into Vρ

from V \ Vρ will have ηi = 1. Thus as long as at least one ηi > 0, we

have ∆ < ∞. We also note that since any new arc added to Gρ in this

process must have its head in Gρ, then Gρ continues to be t-reachable and

thus Lemma 3 applies through all iterations. For every arc (i, j) minimizing

(10) we have the associated event Eij(k), which we update one by one —

adjusting k accordingly — as indicated by Bellman(v̂, i). We then update

v̂i = v̂i + ∆yi for every i ∈ N \ {t}, ûi = ûi + ∆, identify the added sets of

admissible variables, and continue the process.

Now suppose ηi = 0 for all i. We claim the solution v̂ is optimal. To

verify this, we give the restricted dual problem SPRD(v̂), consisting of those
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solutions to SPRLP that are complementary with respect to v̂:

Find αi, xR
ij such that

αj =
∑

i∈B(j)

∑

R∈R
xR

ij +

{
1 j = s
0 j ∈ N \ {s, t}

SPRD(v̂) : pRαi =
∑

j∈A(i)

xR
ij i ∈ N \ {t}, R ∈ R

xR
ij ≥ 0 (i, j) ∈ A, R ∈ R

and
xR

ij = 0 if xR
ij is inadmissible.

Lemma 4 Let v̂ be a solution to SPRLP , with ρκ
ij and ηi computed as above,

and suppose that ηi = 0 for all i. Then SPRD(v̂) has a solution for any

s 6= t.

Proof If xR
ij is an admissible variable, then R will be in exactly one Eij(k),

so that the second equation in SPRD(v̂) reduces to

pRαi = xR
ij, where R ∈ Eij(k),

so that
∑

R ∈ Eij(k)

xR
ij =

∑

R ∈ Eij(k)

pRαi = ρ
kji

ij αi.

Summing over all Eij(k) associated with the arc (i, j) and using Equation (8)

we get

∑

R∈R
xR

ij =
kij∑

κ=1

pκ
ijαi = ρijαj

The equations in SPRD(v̂) now reduce to

αj =
∑

i∈B(j)

ρijαi +

{
1 j = s
0 j ∈ N \ {s, t} (11)

Let B be the corresponding matrix of αi coefficients. We will show that BT

has a nonnegative inverse, and so the system (11) will have a nonnegative
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solution for any s 6= t. BT is identical to the first n− 1 rows and columns of

the matrix A used in Lemma 3. In particular, since every node can reach t

by a path in Gρ then pivoting down the diagonal of BT will always result in a

positive pivot element, and the pivot eta-matrices will always be nonnegative.

Thus the final inverse of BT will also be nonnegative, and hence so will the

solution to system (11). This provides the required solution to SPRD(v̂).

It follows that the final v̂ values will be optimal for all starting nodes s,

and so each vi represents the length of a shortest recourse path from i to t.

This completes the discussion of the procedure for finding shortest recourse

paths. The full algorithm is presented below.
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Procedure Recourse

Input: Network G = (N,A), arclength realizations lkij and associated

probabilities pk
ij for (i, j) ∈ A and k = 1, . . . , rij, and sink node t.

Output: Node values v∗ = (v∗i : i ∈ N) such that v∗i is the expected

length of a shortest recourse path from i to t. The path is found

by choosing, at each i 6= t, an arc (i, j) to traverse that has the

minimum value of Liw + v∗w over all w ∈ A(i).

Procedure:

Initialize v̂i = ûi = 0 for i ∈ N , ηi = 1 for i ∈ N \ {t} and ηt = 0,

and kij = ρij = 0 for (i, j) ∈ A.

do while ηi > 0 for some i ∈ N

solve the system (7) with respect to the current ρ and η

values, and find ∆ using (10).

for each i ∈ N , set v̂i = v̂i + yi∆ and ûi = ûi + ∆.

for each (i, j) with ûi = l
kij+1
ij + v̂j and ηi > 0

add 1 to kij.

add P [Eij(k)] to ρij.

subtract P [Eij(k)] from ηi.

end for

end do while

Set v∗i = v̂i for all i ∈ N .

We demonstrate the procedure for the example given in Figure 3. Table 2

gives the set of v̂, û, y, and ∆ values, the event Eij(k) of all states R such

that xR
ij becomes admissible, and the associated updated kij, ρij and ηi val-

ues. Since the ûi all start off at value 0, then their values will all be the

same, and therefore we can represent them by a single number. The indices

for an added event at node i give only the sequence of kij for j in the forward
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v̂i ûi yi added new values
iteration 1 2 3 4 (common) 1 2 3 4 ∆ event Eij(k) kij ρij ηi

1 0 0 0 0 0 1 1 1 0 1 E24(0, 1) 1 1
2

1
2

2 1 1 1 0 1 1 1
2

1 0 1 E34(0, 1) 1 1
2

1
2

3 2 1.5 2 0 2 1 1
2

1
2

0 2 E23(1, 1) 1 1
4

1
4

4 4 2.5 3 0 4 1 3
8

1
2

0 4
5

E12(1) 1 1
2

1
2

5 4.8 2.8 3.4 0 4.8 11
16

3
8

1
2

0 16
5

E12(2) 2 1 0

6 7 4 5 0 8 3
8

3
8

1
2

0 8
5

E31(1, 1) 1 1
4

1
4

7 7.6 4.6 5.8 0 9.6 1
3

1
3

1
3

0 9
5

E23(2, 1) 2 1
2

0

8 8.2 5.2 6.4 0 11.4 1
7

1
7

2
7

0 28
5

E34(2, 1) 2 1
2

0

9 9 6 8 0

Table 2: Recourse applied to the SPR example

star of i, with components in order of increasing node number. We show the

details of iteration 8 of the example. The kij and ρij values at this stage are

(i, j) (1, 2) (2, 3) (2, 4) (3, 1) (3, 4)
kij 2 2 1 1 1
ρij 1 1

2
1
2

1
4

1
2

and η = (0, 0, 1
4
, 0). Equation (7) is

y1 = 1y2

y2 = 1
2
y3 + 1

2
y4

y3 = 1
4
y1 + 1

2
y4 + 1

4

y4 = 0

which has solution (y1, y2, y3, y4) = (1
7
, 1

7
, 2

7
, 0). To find ∆, we note that node

3 is the only one with ηi > 0. Using Equation (10) we have

∆ = min

{
9 + 8.2− 11.4

1− 1/7
,
17 + 0− 11.4

1− 0

}
= 5.6

and so the new v values are (8.2 + .8, 5.2 + .8, 6.4 + 1.6, 0 + 0) = (9, 6, 8, 0).
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The index k34 is increased to 2, and the value P [E34(k)] = 1
4

is added to ρ34.

This makes all ηi values 0, and the current solution is optimal. We obtain

the dual solution by solving system (11):

α1 = 1
4
α3 + 1

α2 = 1α1

α3 = 1
2
α2

Figure 4 gives the dual solution, with the value at node i being αi = the

expected number of visits to node i, and the values on arc (i, j) being (ρ1
ij, ρ

2
ij)

= the probability of traversing (i, j) under the policy given by the vi values

under each realization of that arc. The expected number of times arc (i, j)

is traversed under arclength realization k (this is the sum of the xR
ij values

over all states R associated with traversing (i, j) under realization k) is then

αip
k
ij, and the dual objective function is

∑

(i,j)∈A

rij∑

k=1

ck
ijαip

k
ij = 2 · 8

7
· 1

2
+ 4 · 8

7
· 1

2
+ 2 · 4

7
· 1

4
+ 9 · 4

7
· 0 + 2 · 4

7
· 1

2

+17 · 4

7
· 1

4
+ 1 · 8

7
· 1

4
+ 5 · 8

7
· 1

4
+ 1 · 8

7
· 1

2
+ 17 · 8

7
· 0 = 9 = v1.

1

3

2

8/7

1/2,1/2

1/4,1/4

1/2,1/41/4,0

1/2,0

8/7

4/7

4

Figure 4: Expected number of visits and traversal probabilities

Theorem 1 Procedure Recourse correctly finds the optimal values v∗i in

O(rn2) steps, where r =
∑

(i,j)∈A rij.
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Proof That the procedure terminates in an optimal solution follows from

Lemma 4, since the corresponding feasible dual solution is complementary

to the final v̂ solution. For the complexity of the procedure, we have by the

construction that in each iteration of Recourse every variable xR
ij with R in

the corresponding set Eij(k) becomes admissible, and further, after this, no

variable xR
ij with lRij = kij is admissible. It follows that after at most r stages

all of the variables must be admissible, and hence all ηi = 0 and Lemma 3

applies.

It remains to determine how much work is done in each iteration. The

computation of the y variables can be done iteratively, by maintaining the

inverse of each matrix Aw in Lemma 3. Updating the inverse can be done

by changing the (i, j) and (i, t) entries in Aw corresponding to the change

in ρij and ηi, and performing two pivots. The whole update therefore takes

O(n2) steps. Computing ∆ takes O(m) steps, and so the whole procedure

takes O(rn2) time.

4 The SPR problem in the presence of nega-

tive arclengths

A critical requirement for the procedure Recourse to find SPRs is that

we have an initial feasible solution to SPRLP . When all arclengths are

negative the zero solution is feasible, but the nonnegativity requirement can

be relaxed if we can find some other way to produce a feasible solution to

SPRLP . In the deterministic shortest path problem the requirement that

no negative cycles exist in the network is sufficient to determine an optimal

solution to the problem using one of the label-correcting techniques. This

can be applied to SPR in the following sense. Suppose the network having

each arclength equal to its minimum realization contains no negative length

cycle. Then we can find the shortest path distances v0
i from each node i to t

using these minimum lengths. If we then reset each arclength realization to

l̃rij = lrij − v0
j + v0

i
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then the l̃ values are all nonnegative, and so we can solve the SPR problem

with the modified arclengths using Recourse. If the final optimal path-

length values are v∗i , i ∈ N , then the optimal values for the problem with

negative arclengths will be v∗i + v0
i , i ∈ N .

The property of no negative minimum-value cycles in G is not a necessary

condition for SPRLP to have a feasible solution. Consider the network in

Figure 5. The lengths of arcs (1,2), (3,1), (4,1), and (2,5) have deterministic

lengths as marked, and the lengths of arcs (2,3) and (2,4) are 0 or –6 with

probability 1
2

each. Using the negative values on the arcs (2,3) and (2,4) gives

a network with negative cycles, but the values v1 = 1, v2 = −2, v3 = v4 = 3,

and v5 = 0 gives a feasible — in fact optimal — solution to SPRLP . Using

expected arclengths to determine negative cycles also does not work, for a

different reason. Consider the same network Figure 5, but now give the

negative lengths on arcs (2,3) and (2,4) the value −7. The expected length

network has no negative cycles. The strategy that always takes at node 2 the

choice of the smallest length arc among arcs (2,3) and (2,4), however, will

result in expected gain going around the respective cycle of 3
4
(−2) + 1

4
(5) <

0. Thus the SPR problem is unbounded below, and so there is no feasible

solution to SPRLP .

3 1

2

2

0,−d

0,−d

1 2

3

4

5s t

Figure 5: Example with negative arclengths

Precisely determining the feasibility of SPRLP in the presence of neg-
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ative arclengths is likely to be more complicated than reducing it to a de-

terministic problem, and to require extending one of the deterministic label-

correcting techniques along similar lines to those taken in this paper. We

conjecture that there exists a polynomial-time algorithm to solve SPR-reset

problems for general networks with arbitrary arclengths, understanding that

this includes the possibility of a −∞-length solution consisting of indefinite

cycling.

5 A Markov Chain Model

Although in general the results of this paper do not apply to Markov chain

models, an exception can be made for a slight modification of the model

presented by Psaraftis and Tsitsiklis [9]. They considered a node-independent

Markov chain model with delays allowed at each node. We note that delays

can be built into the standard SRP problems studied above, simply by placing

loops at each of the nodes whose traversal represents a one-time-unit delay

at that node. This is somewhat unsatisfactory, however, as it calls for a

complete reset after each unit of delay. We allow a time-dependent reset to

be made for this model by letting a Markov chain operate during the time

spent waiting at a node, but having a complete reset occur — starting with

the initial distribution — upon revisiting that node later in the traversal.

Let Mi be the Markov chain associated with node i, with ri states. The

state forward star lengths are lki = (lkij : j ∈ A(i)), k = 1, . . . , ri, the initial

state distribution is chosen using probabilities pk, k = 1, . . . , ri, and the state

transitions occur using ri × ri transition probability matrix M i. We make

the important assumption that the state arclength vectors lk are distinct, so

that the traveler always knows exactly which state of the Markov process is

occurring while at that node. Each time node i is encountered the state, and

associated arclengths, are chosen from the initial distribution. If it is decided

to wait at node i there is a delay charge of D, and the arclengths are reset

to those associated with the new state using the Markov process.
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It turns out that this process can be modeled using the appropriate mod-

ification of the original network. For each node i, we create 2ri + 1 nodes,

labeled ik for k = 1, . . . , ri and i′k for k = 0, . . . , ri. All arcs in G coming into

node i now go into node i′0, and each node ik has arcs pointing from it to all

of the nodes in A(i) (or more precisely their i′0 counterparts), with arclengths

equal to those given by lk. Each node ik has an arc from it to i′k of length D.

From i′k there are arcs pointing to each of the nodes ij, j = 1, . . . , ri, which

will represent the initial and transition state determinations for the Markov

chain. Figure 6 shows the replacement of a node i for which Mi has three

states. The dynamics of the Markov chain at this node are modeled by

0i 1i

1i

2i

3i

3i

2i

Figure 6: Transformation for a 3-state Markov chain

assigning arclength vectors at i′x by

lki′xiw =

{
0 w = k
∞ w 6= k

with probabilities pk
i′0

= pk or pk
i′x = M i

x,k, x = 1, . . . , ri. This set of arclengths

has the effect of requiring a traveler at node i′x to take the single arc that

goes to the node ik as required by either the initial or transition probabilities.

At each of the nodes ix the traveler must decide whether to take one of the

arcs going to a node of A(i), with length corresponding to that indicated by

the Markov chain at state x, or to take the arc to i′x, which corresponds to

choosing to delay at that node. The transition nodes are arranged so that
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the traveler cannot see the new transition state until after the choice to delay

is made. It follows that this Markov chain model can be transformed to a

node-independent model, and therefore we can extend the Psaraftis/Tsitsiklis

model (with the reset-upon-revisiting modification) to apply to networks with

cycles. The following result follows from Theorem 1.

Theorem 2 The optimal recourse path for the Psaraftis/Tsitsiklis Markov

model, with the reset-upon-revisiting modification, can be found in O(r(m +

r)(n + r)2) steps, where r =
∑n

i=1 ri.

One can define an arc-independent version of this model, where each of the in-

dividual arc Markov chains operates independently and resets independently

at each revisit to the node. It would be an interesting problem to decide

whether the techniques of this paper apply to that version as well.

29



References

[1] G. Andreatta and L. Romeo, Stochastic shortest paths with recourse,

Networks 18 (1988), 193–204.

[2] R.K. Cheung, Iterative methods for dynamic stochastic shortest path

problems, Naval Research Logistics 45 (1998), 769–789.

[3] J. Croucher, A note on the stochastic shortest route problem, Naval Re-

search Logistics Quarterly 25 (1978), 729–732.

[4] M.O. Ball, C. Colbourn, and J.S. Provan, Network Reliability, Chapter

11 in Handbooks in OR & MS 7, Elsevier Science B.V., Amsterdam, 1995,

pp. 673–762.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

[6] R. Hall, The fastest path through a network with random time-dependent

travel times, Transportation Science 20 (1994), 182–188.

[7] E. Miller-Hooks, Adaptive least-expected time paths in stochastic, time-

varying transportation and data networks, Networks 37 (2001), 35–52.

[8] G.H. Polychronopoulos and J.N. Tsitsiklis, Stochastic shortest path prob-

lems with recourse, Networks 27 (1996), 133–143.

[9] H.N. Psaraftis and J.N. Tsitsiklis, Dynamic shortest paths in acyclic net-

works with Markovian arc costs, Operations Research 41 (1993), 91–101.

[10] S. Ross, Introduction to Stochastic Dynamic Programming, Academic

Press, New York, 1983.

30


