1. State and prove the version of the weak law of large numbers presented in class.

2. Suppose that \(Y_1, \ldots, Y_n \) are random variables such that \(E e^{sY_i} \leq e^{s^2/2} \) for each \(s \geq 0 \). Show that
\[
\Theta = E \left[\max_{1 \leq i \leq n} Y_i \right] \leq \sqrt{2 \ln n}
\]
Hint: Begin by considering \(e^{s\Theta} \) for a value \(s > 0 \).

3. Let \(X_1, X_2, \ldots, X \) be random variables, all defined on the same probability space, such that \(X_n \) converges to \(X \) in probability. Establish the following relations directly, without appealing to results from class.
 a. Show that \(X = O_P(1) \).
 b. Show that \(X_n = O_P(1) \).
 c. Show that \(O_P(1) \cdot o_P(1) = o_P(1) \).

4. Let \(X_1, X_2, \ldots, X \) be identically distributed non-negative random variables such that \(EX^2 \) is finite. Note that the \(X_i \) may be dependent.
 a. Show that \(EXI\{X > \alpha\} \to 0 \) as \(\alpha \to \infty \).
 b. Show carefully that for \(\alpha > 0 \),
\[
\max_{1 \leq i \leq n} X_i \cdot I \left\{ \max_{1 \leq i \leq n} X_i \geq \alpha \right\} \leq \max_{1 \leq i \leq n} X_i \cdot I\{X_i \geq \alpha\}
\]
 c. Show that
\[
n^{-1} E \left[\max_{1 \leq i \leq n} X_i \right] \to 0 \quad \text{as} \quad n \to \infty.
\]

5. For \(n \geq 1 \) let \(X_n \) have a Bern\((n,p)\) distribution, where \(p \in (0,1) \) is fixed. What can you say about the limiting distribution of the random vectors \(Y_n = (X_n, n - X_n)^T \) after suitable scaling and/or shifting?
6. Let X_1, \ldots, X_n be an i.i.d. sample from a population with $E X = \mu$ and $\text{Var}(X) = \sigma^2 < \infty$. Let $\bar{X}_n = n^{-1} \sum_{i=1}^{n} X_i$ be the sample mean of X_1, \ldots, X_n.

a. After suitable scaling and/or shifting, what can you say about the limiting distribution of $(\bar{X}_n)^3$ when $\mu \neq 0$?

b. After suitable scaling and/or shifting, what can you say about the limiting distribution of $(\bar{X}_n)^3$ when $\mu = 0$?

7. Let X, Y be random variables such that $E X^2$ and $E Y^2$ are finite. Let $SD(\cdot)$ denote standard deviation. Show that $SD(X + Y) \leq SD(X) + SD(Y)$.

8. If $X \sim \mathcal{N}_p(\mu, \Sigma)$, find the distribution of $AX + b$ where A is a $d \times p$ matrix and $b \in \mathbb{R}^d$.