Problem 1. Let μ be a finite measure on (X, S) where $S = \sigma(E)$ with a field E. Show that, for $A \in S$ and any $\epsilon > 0$, there is $A_\epsilon \in E$ such that $|\mu(A) - \mu(A_\epsilon)| \leq \mu(A \triangle A_\epsilon) < \epsilon$. Show, in particular, that the first inequality in the latter relation holds.

Problem 2. Without providing any proofs, describe the steps in the construction of the Lebesgue-Stieltjes measure on the real line (including the completion step). If the Lebesgue-Stieltjes measure μ is a point mass at 0, what is B_μ, the σ-field obtained by completing the σ-field B of Borel sets under μ?

Problem 3. (a) Provide an example of a nonmeasurable function f on some measurable space (X, S) such that f^2 is measurable. (b) If f and g are measurable functions on a measurable space (X, S), show that $f + g$ is also measurable.

Problem 4. Let $X = \mathbb{R}$, $S = B(\mathbb{R})$, μ = Lebesgue measure. Consider the function
\[f(x) = \begin{cases} 0, & x < 0 \\ 1/2^k, & 2k \leq x < 2k + 1 \\ -1/3^k, & 2k + 1 \leq x < 2k + 2, \quad k = 0, 1, 2, \ldots. \end{cases} \]
Compute $\int_X f(x)\mu(dx)$ by using the definition of integral. Give an example of another measure μ on (\mathbb{R}, B) for which this integral is not defined.

Problem 5. Let μ be the Lebesgue measure on (\mathbb{R}, B) and μ_F be the Lebesgue-Stieltjes measure on (\mathbb{R}, B) induced by the function $F(x) = x^{2005}$, $x \in \mathbb{R}$. Show that $\mu_F \ll \mu$ and determine the Radon-Nikodym derivative $d\mu_F/d\mu$. Is it true that $\mu_F \sim \mu$?

Problem 6. Give an example of a sequence of measurable functions f_n on some measure space (X, S, μ) such that (at the same time)
- f_n does not converge μ-a.e. on X,
- f_n converges in measure μ, and
- f_n converges in $L^p(X, S, \mu)$ for $p < 2006$ but not for $p > 2006$.

Good luck!