1. (15 points) Let ξ_1, ξ_2, \cdots be independent with $\mathbb{E}(\xi_m) = 0$ and $\text{var}(\xi_m) = \sigma_m^2 < \infty$. Let $s_n^2 = \sum_{m=1}^{n} \sigma_m^2$ and $S_n = \sum_{m=1}^{n} \xi_m$. Show that $S_n^2 - s_n^2$ is a martingale.

2. (20 points) Suppose $\{X_n^1\}$ and $\{X_n^2\}$ are supermartingales with respect to some filtration $\{\mathcal{F}_n\}$ and N is a stopping time such that $X_N^1 \geq X_N^2$ a.s. Show that

$$Y_n = X_{n1}^11_{N>n} + X_{n2}^21_{N\leq n}$$

is a supermartingale.

3. (15 points)
 a. (5 pts) Let μ be a probability measure on the infinite product space $((\mathbb{R}^{\infty}, B(\mathbb{R}^{\infty})))$. Say what it means for μ to be a product measure.

 b. (10 pts) Let $\{X_k\}_{k \geq 1}$ be a sequence of \mathbb{R} valued independent random variables, given on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $X = (X_1, X_2, \cdots)$. Let μ be the probability distribution of X. Show that μ is a product measure.

4. (20 points) Let $0 \leq X_1 \leq X_2 \cdots$ be random variables such that $EX_n = an^\alpha$, with $a, \alpha > 0$, and $\text{var}(X_n) \leq Bn^\beta$ with $\beta < 2\alpha$. Show that $X_n/n^\alpha \to a$ a.s.

5. (15 points) Prove the "conditional" Hölder's inequality: Let X, Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that for some $p, q > 1$, $\mathbb{E}|X|^p < \infty$ and $\mathbb{E}|Y|^q < \infty$. Let \mathcal{G} be a sub σ-field of \mathcal{F}. Show that

$$\mathbb{E}(|XY| | \mathcal{G}) \leq [\mathbb{E}(|X|^p | \mathcal{G})]^{1/p} [\mathbb{E}(|Y|^q | \mathcal{G})]^{1/q}, \text{ a.s.}$$

6. (15 points) Let $\mu_n \sim N(a_n, 1)$, where a_n is a real sequence. Show that the sequence $\{\mu_n\}$ is tight iff a_n is a bounded sequence.