1. (15 points) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{G} be a sub σ-field of \mathcal{F}. Let $\mu : \Omega \times \mathcal{F} \to [0, 1]$ be a map such that for every $\omega \in \Omega$, $\mu(\omega, \cdot)$ is a probability measure on (Ω, \mathcal{F}) and for every $A \in \mathcal{F}$
$$\mu(\omega, A) = \mathbb{P}(A | \mathcal{G})(\omega), \text{ a.s.}$$
Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $E|X| < \infty$. Show by giving all steps that
$$E(X | \mathcal{G})(\omega) = \int_{\Omega} X(\omega')\mu(\omega, d\omega') \text{ for } \mathbb{P} \text{ a.e. } \omega.$$

2. (20 points) Let X_1, X_2, \ldots be real-valued measurable functions on (Ω, \mathcal{F}). Let P and Q be two probability measures on (Ω, \mathcal{F}). Suppose that for each $n \geq 1$, under P, (X_1, \ldots, X_n) has a joint probability density function (p.d.f.) $p_n : \mathbb{R}^n \to \mathbb{R}_+$ while under Q the joint p.d.f. is $q_n : \mathbb{R}^n \to \mathbb{R}_+$. Define
$$Y_n = \begin{cases}
\frac{q_n(X_1, \ldots, X_n)}{p_n(X_1, \ldots, X_n)} & \text{if the denominator is non-zero} \\
0 & \text{otherwise}
\end{cases}$$
Let $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}$. Show that (Y_n, \mathcal{F}_n) is a supermartingale and it is a martingale if $Q|\mathcal{F}_n$ is absolutely continuous with respect to $P|\mathcal{F}_n$.

3. (20 points) Let $\{X_n\}_{n \geq 1}$ be a uniformly integrable sequence of real random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\{\mathcal{G}_n\}$ be a sequence of sub σ-fields of \mathcal{F}. Show that the sequence $\{E(X_n | \mathcal{G}_n), n \geq 1\}$ is uniformly integrable.

4. (15 points) Let $\{P_n\}_{n \geq 1}$, P be probability measures on $(\mathbb{R}^d, B(\mathbb{R}^d))$. Suppose for every continuous function $f : \mathbb{R}^d \to \mathbb{R}$ with compact support (i.e. the function is zero outside a compact subset of \mathbb{R}^d),
$$\int f dP_n \to \int f dP \text{ as } n \to \infty.$$
Show that P_n converges weakly to P.

5. (15 points) Let P and Q be probability measures on (Ω, \mathcal{F}). Let $\{X_n\}$ be a sequence of real random variables on (Ω, \mathcal{F}) such that it is stationary and ergodic under both P and Q. Let $P_{X_1} = P \circ X_1^{-1}$ and $Q_{X_1} = Q \circ X_1^{-1}$. Show that either $P_{X_1} = Q_{X_1}$ or they are singular (i.e. they are supported on disjoint sets).
Hint: If $P_{X_1} \neq Q_{X_1}$, for some Borel subset B of \mathbb{R}, $P(X_1 \in B) \neq Q(X_1 \in B)$. Now apply the ergodic theorem to $\frac{1}{n} \sum_{i=1}^n 1_{\{X_i \in B\}}$.

6. (15 points) Let X_1, X_2, \ldots be independent with $P(X_n = 1) = p_n$ and $P(X_n = 0) = 1 - p_n$, $n \geq 1$. Show that (i) $X_n \to 0$ in probability iff $p_n \to 0$ and (ii) $X_n \to 0$ a.s. iff $\sum p_n < \infty$.